Properties

Label 2-800-40.19-c4-0-6
Degree $2$
Conductor $800$
Sign $0.775 - 0.631i$
Analytic cond. $82.6959$
Root an. cond. $9.09373$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.51i·3-s − 78.3·7-s + 50.5·9-s − 123.·11-s − 229.·13-s − 557. i·17-s − 334.·19-s + 432. i·21-s + 244.·23-s − 725. i·27-s − 301. i·29-s + 339. i·31-s + 679. i·33-s − 187.·37-s + 1.26e3i·39-s + ⋯
L(s)  = 1  − 0.612i·3-s − 1.59·7-s + 0.624·9-s − 1.01·11-s − 1.35·13-s − 1.92i·17-s − 0.925·19-s + 0.979i·21-s + 0.461·23-s − 0.995i·27-s − 0.358i·29-s + 0.353i·31-s + 0.623i·33-s − 0.136·37-s + 0.833i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.775 - 0.631i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.775 - 0.631i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $0.775 - 0.631i$
Analytic conductor: \(82.6959\)
Root analytic conductor: \(9.09373\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (399, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :2),\ 0.775 - 0.631i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.5203742043\)
\(L(\frac12)\) \(\approx\) \(0.5203742043\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 5.51iT - 81T^{2} \)
7 \( 1 + 78.3T + 2.40e3T^{2} \)
11 \( 1 + 123.T + 1.46e4T^{2} \)
13 \( 1 + 229.T + 2.85e4T^{2} \)
17 \( 1 + 557. iT - 8.35e4T^{2} \)
19 \( 1 + 334.T + 1.30e5T^{2} \)
23 \( 1 - 244.T + 2.79e5T^{2} \)
29 \( 1 + 301. iT - 7.07e5T^{2} \)
31 \( 1 - 339. iT - 9.23e5T^{2} \)
37 \( 1 + 187.T + 1.87e6T^{2} \)
41 \( 1 - 1.28e3T + 2.82e6T^{2} \)
43 \( 1 - 1.07e3iT - 3.41e6T^{2} \)
47 \( 1 + 3.24e3T + 4.87e6T^{2} \)
53 \( 1 - 2.02e3T + 7.89e6T^{2} \)
59 \( 1 - 555.T + 1.21e7T^{2} \)
61 \( 1 - 3.18e3iT - 1.38e7T^{2} \)
67 \( 1 - 3.43e3iT - 2.01e7T^{2} \)
71 \( 1 - 2.40e3iT - 2.54e7T^{2} \)
73 \( 1 - 2.09e3iT - 2.83e7T^{2} \)
79 \( 1 - 2.93e3iT - 3.89e7T^{2} \)
83 \( 1 + 8.32e3iT - 4.74e7T^{2} \)
89 \( 1 - 406.T + 6.27e7T^{2} \)
97 \( 1 - 1.76e4iT - 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.836417574925723879049887923168, −9.123474446516929864670318170169, −7.80720187751612523385196696739, −7.10362638612391563630577190678, −6.59286934115549429079234114463, −5.38312961163151162114270689754, −4.43167616778088620790112964280, −2.96796671133221929814344285677, −2.38291132901383866504246349141, −0.62927297853766497970783662555, 0.18338564345894239837767431180, 2.05776900879149324239211520270, 3.18891279050029484793951743895, 4.07366436288220159968754680414, 5.05895267911823616560084834703, 6.13622978968147202680424011778, 6.92351106188002632007933115995, 7.87368492802795559430025558445, 8.951744439821716253880817342554, 9.821587258753542143956125951188

Graph of the $Z$-function along the critical line