L(s) = 1 | − 5.51i·3-s − 78.3·7-s + 50.5·9-s − 123.·11-s − 229.·13-s − 557. i·17-s − 334.·19-s + 432. i·21-s + 244.·23-s − 725. i·27-s − 301. i·29-s + 339. i·31-s + 679. i·33-s − 187.·37-s + 1.26e3i·39-s + ⋯ |
L(s) = 1 | − 0.612i·3-s − 1.59·7-s + 0.624·9-s − 1.01·11-s − 1.35·13-s − 1.92i·17-s − 0.925·19-s + 0.979i·21-s + 0.461·23-s − 0.995i·27-s − 0.358i·29-s + 0.353i·31-s + 0.623i·33-s − 0.136·37-s + 0.833i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.775−0.631i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(0.775−0.631i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.775−0.631i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), 0.775−0.631i)
|
Particular Values
L(25) |
≈ |
0.5203742043 |
L(21) |
≈ |
0.5203742043 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+5.51iT−81T2 |
| 7 | 1+78.3T+2.40e3T2 |
| 11 | 1+123.T+1.46e4T2 |
| 13 | 1+229.T+2.85e4T2 |
| 17 | 1+557.iT−8.35e4T2 |
| 19 | 1+334.T+1.30e5T2 |
| 23 | 1−244.T+2.79e5T2 |
| 29 | 1+301.iT−7.07e5T2 |
| 31 | 1−339.iT−9.23e5T2 |
| 37 | 1+187.T+1.87e6T2 |
| 41 | 1−1.28e3T+2.82e6T2 |
| 43 | 1−1.07e3iT−3.41e6T2 |
| 47 | 1+3.24e3T+4.87e6T2 |
| 53 | 1−2.02e3T+7.89e6T2 |
| 59 | 1−555.T+1.21e7T2 |
| 61 | 1−3.18e3iT−1.38e7T2 |
| 67 | 1−3.43e3iT−2.01e7T2 |
| 71 | 1−2.40e3iT−2.54e7T2 |
| 73 | 1−2.09e3iT−2.83e7T2 |
| 79 | 1−2.93e3iT−3.89e7T2 |
| 83 | 1+8.32e3iT−4.74e7T2 |
| 89 | 1−406.T+6.27e7T2 |
| 97 | 1−1.76e4iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.836417574925723879049887923168, −9.123474446516929864670318170169, −7.80720187751612523385196696739, −7.10362638612391563630577190678, −6.59286934115549429079234114463, −5.38312961163151162114270689754, −4.43167616778088620790112964280, −2.96796671133221929814344285677, −2.38291132901383866504246349141, −0.62927297853766497970783662555,
0.18338564345894239837767431180, 2.05776900879149324239211520270, 3.18891279050029484793951743895, 4.07366436288220159968754680414, 5.05895267911823616560084834703, 6.13622978968147202680424011778, 6.92351106188002632007933115995, 7.87368492802795559430025558445, 8.951744439821716253880817342554, 9.821587258753542143956125951188