L(s) = 1 | + 15.9i·3-s − 56.7·7-s − 173.·9-s + 122.·11-s + 77.6·13-s − 196. i·17-s + 400.·19-s − 904. i·21-s + 806.·23-s − 1.46e3i·27-s − 147. i·29-s − 1.05e3i·31-s + 1.95e3i·33-s + 1.21e3·37-s + 1.23e3i·39-s + ⋯ |
L(s) = 1 | + 1.77i·3-s − 1.15·7-s − 2.13·9-s + 1.01·11-s + 0.459·13-s − 0.679i·17-s + 1.10·19-s − 2.05i·21-s + 1.52·23-s − 2.01i·27-s − 0.175i·29-s − 1.09i·31-s + 1.79i·33-s + 0.885·37-s + 0.813i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.0519−0.998i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(0.0519−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.0519−0.998i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), 0.0519−0.998i)
|
Particular Values
L(25) |
≈ |
1.965774237 |
L(21) |
≈ |
1.965774237 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−15.9iT−81T2 |
| 7 | 1+56.7T+2.40e3T2 |
| 11 | 1−122.T+1.46e4T2 |
| 13 | 1−77.6T+2.85e4T2 |
| 17 | 1+196.iT−8.35e4T2 |
| 19 | 1−400.T+1.30e5T2 |
| 23 | 1−806.T+2.79e5T2 |
| 29 | 1+147.iT−7.07e5T2 |
| 31 | 1+1.05e3iT−9.23e5T2 |
| 37 | 1−1.21e3T+1.87e6T2 |
| 41 | 1+2.41e3T+2.82e6T2 |
| 43 | 1−922.iT−3.41e6T2 |
| 47 | 1−3.72e3T+4.87e6T2 |
| 53 | 1−3.43e3T+7.89e6T2 |
| 59 | 1+1.90e3T+1.21e7T2 |
| 61 | 1−700.iT−1.38e7T2 |
| 67 | 1−1.05e3iT−2.01e7T2 |
| 71 | 1+6.07e3iT−2.54e7T2 |
| 73 | 1−2.12e3iT−2.83e7T2 |
| 79 | 1+5.44e3iT−3.89e7T2 |
| 83 | 1−9.58e3iT−4.74e7T2 |
| 89 | 1−4.84e3T+6.27e7T2 |
| 97 | 1−2.61e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.600007818218926735489567862743, −9.435732817109693209595857949483, −8.650342838545689870819327010114, −7.22736158863225519239791601818, −6.20482404682867547078932217045, −5.35104744859431469046530081808, −4.35611005889812264655436047232, −3.52487854360384978000395147028, −2.86312447466292165706374029983, −0.72079954930435192913256239541,
0.74287211840348642794745126136, 1.46622860725953098769739139061, 2.80343957602274318478193069575, 3.63683018786208237002460249336, 5.39610590763646963095493769161, 6.33378526995271510400770432637, 6.82773254586713829431468028952, 7.50596110406468320074373210503, 8.661726742263366032088985897512, 9.166839975101157310206772355603