L(s) = 1 | − 10.2i·3-s + 43.3·7-s − 23.1·9-s + 165.·11-s − 201.·13-s + 172. i·17-s − 640.·19-s − 441. i·21-s + 497.·23-s − 590. i·27-s − 509. i·29-s − 492. i·31-s − 1.68e3i·33-s + 678.·37-s + 2.05e3i·39-s + ⋯ |
L(s) = 1 | − 1.13i·3-s + 0.883·7-s − 0.285·9-s + 1.36·11-s − 1.19·13-s + 0.597i·17-s − 1.77·19-s − 1.00i·21-s + 0.940·23-s − 0.810i·27-s − 0.606i·29-s − 0.512i·31-s − 1.54i·33-s + 0.495·37-s + 1.35i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.714+0.700i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(−0.714+0.700i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.714+0.700i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), −0.714+0.700i)
|
Particular Values
L(25) |
≈ |
2.047364764 |
L(21) |
≈ |
2.047364764 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+10.2iT−81T2 |
| 7 | 1−43.3T+2.40e3T2 |
| 11 | 1−165.T+1.46e4T2 |
| 13 | 1+201.T+2.85e4T2 |
| 17 | 1−172.iT−8.35e4T2 |
| 19 | 1+640.T+1.30e5T2 |
| 23 | 1−497.T+2.79e5T2 |
| 29 | 1+509.iT−7.07e5T2 |
| 31 | 1+492.iT−9.23e5T2 |
| 37 | 1−678.T+1.87e6T2 |
| 41 | 1+613.T+2.82e6T2 |
| 43 | 1+1.39e3iT−3.41e6T2 |
| 47 | 1−965.T+4.87e6T2 |
| 53 | 1−4.61e3T+7.89e6T2 |
| 59 | 1+822.T+1.21e7T2 |
| 61 | 1+6.91e3iT−1.38e7T2 |
| 67 | 1+4.92e3iT−2.01e7T2 |
| 71 | 1+4.23e3iT−2.54e7T2 |
| 73 | 1−8.50e3iT−2.83e7T2 |
| 79 | 1+1.02e4iT−3.89e7T2 |
| 83 | 1+818.iT−4.74e7T2 |
| 89 | 1−1.04e4T+6.27e7T2 |
| 97 | 1+1.16e4iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.199615041360660596559620309586, −8.373735070085343036786289311816, −7.60241237695705864767860519251, −6.79095253603835812549211774312, −6.15156838463631012641659535679, −4.81832803346837291454019053832, −3.97779549028878599894719347715, −2.29717707242772159652673357047, −1.64444268524952570416178598654, −0.47854252105765561282699434614,
1.23432627196308448692049578344, 2.54962649969273788105077300777, 3.91024796753645282885444829957, 4.56852342436524208323713858479, 5.24626943964395500232285996501, 6.59814886274430914319353241886, 7.38412946074297020320509469152, 8.659032237291636822832427827387, 9.135216827976911894156515851170, 10.03518034208551245442515635389