L(s) = 1 | − 10.2i·3-s + 43.3·7-s − 23.1·9-s + 165.·11-s − 201.·13-s + 172. i·17-s − 640.·19-s − 441. i·21-s + 497.·23-s − 590. i·27-s − 509. i·29-s − 492. i·31-s − 1.68e3i·33-s + 678.·37-s + 2.05e3i·39-s + ⋯ |
L(s) = 1 | − 1.13i·3-s + 0.883·7-s − 0.285·9-s + 1.36·11-s − 1.19·13-s + 0.597i·17-s − 1.77·19-s − 1.00i·21-s + 0.940·23-s − 0.810i·27-s − 0.606i·29-s − 0.512i·31-s − 1.54i·33-s + 0.495·37-s + 1.35i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.714 + 0.700i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.714 + 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(2.047364764\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.047364764\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 10.2iT - 81T^{2} \) |
| 7 | \( 1 - 43.3T + 2.40e3T^{2} \) |
| 11 | \( 1 - 165.T + 1.46e4T^{2} \) |
| 13 | \( 1 + 201.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 172. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + 640.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 497.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 509. iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 492. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 678.T + 1.87e6T^{2} \) |
| 41 | \( 1 + 613.T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.39e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 965.T + 4.87e6T^{2} \) |
| 53 | \( 1 - 4.61e3T + 7.89e6T^{2} \) |
| 59 | \( 1 + 822.T + 1.21e7T^{2} \) |
| 61 | \( 1 + 6.91e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 4.92e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 + 4.23e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 8.50e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 1.02e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + 818. iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 1.04e4T + 6.27e7T^{2} \) |
| 97 | \( 1 + 1.16e4iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.199615041360660596559620309586, −8.373735070085343036786289311816, −7.60241237695705864767860519251, −6.79095253603835812549211774312, −6.15156838463631012641659535679, −4.81832803346837291454019053832, −3.97779549028878599894719347715, −2.29717707242772159652673357047, −1.64444268524952570416178598654, −0.47854252105765561282699434614,
1.23432627196308448692049578344, 2.54962649969273788105077300777, 3.91024796753645282885444829957, 4.56852342436524208323713858479, 5.24626943964395500232285996501, 6.59814886274430914319353241886, 7.38412946074297020320509469152, 8.659032237291636822832427827387, 9.135216827976911894156515851170, 10.03518034208551245442515635389