L(s) = 1 | + 10.4i·3-s − 66.0·7-s + 134.·9-s + 141. i·11-s − 246. i·13-s + 297.·17-s − 174. i·19-s − 688. i·21-s − 1.57e3·23-s + 3.93e3i·27-s + 922. i·29-s + 6.19e3·31-s − 1.48e3·33-s − 1.39e4i·37-s + 2.57e3·39-s + ⋯ |
L(s) = 1 | + 0.669i·3-s − 0.509·7-s + 0.551·9-s + 0.353i·11-s − 0.405i·13-s + 0.249·17-s − 0.110i·19-s − 0.340i·21-s − 0.621·23-s + 1.03i·27-s + 0.203i·29-s + 1.15·31-s − 0.236·33-s − 1.67i·37-s + 0.271·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.929−0.368i)Λ(6−s)
Λ(s)=(=(800s/2ΓC(s+5/2)L(s)(0.929−0.368i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.929−0.368i
|
Analytic conductor: |
128.307 |
Root analytic conductor: |
11.3272 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(401,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :5/2), 0.929−0.368i)
|
Particular Values
L(3) |
≈ |
2.061404021 |
L(21) |
≈ |
2.061404021 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1−10.4iT−243T2 |
| 7 | 1+66.0T+1.68e4T2 |
| 11 | 1−141.iT−1.61e5T2 |
| 13 | 1+246.iT−3.71e5T2 |
| 17 | 1−297.T+1.41e6T2 |
| 19 | 1+174.iT−2.47e6T2 |
| 23 | 1+1.57e3T+6.43e6T2 |
| 29 | 1−922.iT−2.05e7T2 |
| 31 | 1−6.19e3T+2.86e7T2 |
| 37 | 1+1.39e4iT−6.93e7T2 |
| 41 | 1+3.00e3T+1.15e8T2 |
| 43 | 1+1.62e4iT−1.47e8T2 |
| 47 | 1−1.00e3T+2.29e8T2 |
| 53 | 1−2.29e4iT−4.18e8T2 |
| 59 | 1−3.18e4iT−7.14e8T2 |
| 61 | 1+2.13e4iT−8.44e8T2 |
| 67 | 1+3.86e4iT−1.35e9T2 |
| 71 | 1−3.09e4T+1.80e9T2 |
| 73 | 1−7.95e4T+2.07e9T2 |
| 79 | 1+2.33e4T+3.07e9T2 |
| 83 | 1+6.67e4iT−3.93e9T2 |
| 89 | 1−6.61e4T+5.58e9T2 |
| 97 | 1−1.25e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.679241686023298532512793844410, −8.918444307312892919303298818817, −7.82381031681308660399881988319, −7.00608283402982099693872866862, −6.01226987499762360570698170975, −5.01776695996754846788992161120, −4.11516027679407723827275585769, −3.26741638218319423441235663517, −2.00904764205824002901070685715, −0.61569480339858706485956968350,
0.71253368852011956101927937950, 1.70531085800221983416647956176, 2.86827947571865473398636421542, 3.96970796570595400676776765688, 5.01503260745124788954807165700, 6.33719263950396371190328081128, 6.65646778595259152699069746984, 7.81867912056846020891718741817, 8.391260525561573212425340425987, 9.685640067457867980143483927578