L(s) = 1 | + (0.744 + 0.373i)2-s + (0.703 + 1.58i)3-s + (−0.779 − 1.04i)4-s + (0.345 + 1.15i)5-s + (−0.0676 + 1.44i)6-s + (−0.520 − 1.20i)7-s + (−0.478 − 2.71i)8-s + (−2.00 + 2.22i)9-s + (−0.174 + 0.989i)10-s + (2.11 − 0.501i)11-s + (1.10 − 1.97i)12-s + (−3.80 − 2.50i)13-s + (0.0636 − 1.09i)14-s + (−1.58 + 1.36i)15-s + (−0.0912 + 0.304i)16-s + (3.54 − 1.28i)17-s + ⋯ |
L(s) = 1 | + (0.526 + 0.264i)2-s + (0.406 + 0.913i)3-s + (−0.389 − 0.523i)4-s + (0.154 + 0.516i)5-s + (−0.0276 + 0.588i)6-s + (−0.196 − 0.456i)7-s + (−0.169 − 0.958i)8-s + (−0.669 + 0.742i)9-s + (−0.0551 + 0.312i)10-s + (0.637 − 0.151i)11-s + (0.320 − 0.569i)12-s + (−1.05 − 0.694i)13-s + (0.0170 − 0.292i)14-s + (−0.409 + 0.351i)15-s + (−0.0228 + 0.0761i)16-s + (0.859 − 0.312i)17-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(0.761−0.647i)Λ(2−s)
Λ(s)=(=(81s/2ΓC(s+1/2)L(s)(0.761−0.647i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
0.761−0.647i
|
Analytic conductor: |
0.646788 |
Root analytic conductor: |
0.804231 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :1/2), 0.761−0.647i)
|
Particular Values
L(1) |
≈ |
1.13740+0.418027i |
L(21) |
≈ |
1.13740+0.418027i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.703−1.58i)T |
good | 2 | 1+(−0.744−0.373i)T+(1.19+1.60i)T2 |
| 5 | 1+(−0.345−1.15i)T+(−4.17+2.74i)T2 |
| 7 | 1+(0.520+1.20i)T+(−4.80+5.09i)T2 |
| 11 | 1+(−2.11+0.501i)T+(9.82−4.93i)T2 |
| 13 | 1+(3.80+2.50i)T+(5.14+11.9i)T2 |
| 17 | 1+(−3.54+1.28i)T+(13.0−10.9i)T2 |
| 19 | 1+(2.50+0.911i)T+(14.5+12.2i)T2 |
| 23 | 1+(2.38−5.53i)T+(−15.7−16.7i)T2 |
| 29 | 1+(−0.241−4.15i)T+(−28.8+3.36i)T2 |
| 31 | 1+(7.40−0.865i)T+(30.1−7.14i)T2 |
| 37 | 1+(−7.47−6.27i)T+(6.42+36.4i)T2 |
| 41 | 1+(−5.17+2.59i)T+(24.4−32.8i)T2 |
| 43 | 1+(−3.46−3.67i)T+(−2.50+42.9i)T2 |
| 47 | 1+(−2.97−0.348i)T+(45.7+10.8i)T2 |
| 53 | 1+(6.22−10.7i)T+(−26.5−45.8i)T2 |
| 59 | 1+(10.6+2.51i)T+(52.7+26.4i)T2 |
| 61 | 1+(−7.04+9.45i)T+(−17.4−58.4i)T2 |
| 67 | 1+(−0.0482+0.828i)T+(−66.5−7.77i)T2 |
| 71 | 1+(−1.25+7.14i)T+(−66.7−24.2i)T2 |
| 73 | 1+(1.41+7.99i)T+(−68.5+24.9i)T2 |
| 79 | 1+(10.2+5.16i)T+(47.1+63.3i)T2 |
| 83 | 1+(4.26+2.14i)T+(49.5+66.5i)T2 |
| 89 | 1+(−0.578−3.28i)T+(−83.6+30.4i)T2 |
| 97 | 1+(0.390−1.30i)T+(−81.0−53.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.49798531887954687776046986410, −13.88519213860512241837981232303, −12.59344630341229735809923326573, −10.91127604426353929450572479093, −9.996849513610254956064548183517, −9.225182394302638019747765128797, −7.48250397780019784360537381140, −5.91812524041052484590700227905, −4.67442667456820543059632374447, −3.31757211898587386784856436161,
2.39507635433655029372911158548, 4.16314192954395286162154840234, 5.82944469430959558126534426016, 7.39741712352485313953142164376, 8.600371352579214778816855464459, 9.449623837623398221116256944433, 11.55078706773173010556821584477, 12.59305741633429464623828691485, 12.73991577883053082202673608077, 14.28152636617441902296481287398