Properties

Label 2-3e4-1.1-c3-0-9
Degree $2$
Conductor $81$
Sign $-1$
Analytic cond. $4.77915$
Root an. cond. $2.18612$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s − 5·4-s − 12.1·5-s − 22·7-s − 22.5·8-s − 21·10-s + 58.8·11-s − 49·13-s − 38.1·14-s + 1.00·16-s + 36.3·17-s − 70·19-s + 60.6·20-s + 101.·22-s + 24.2·23-s + 22·25-s − 84.8·26-s + 110·28-s − 278.·29-s − 112·31-s + 181.·32-s + 63·34-s + 266.·35-s + 281·37-s − 121.·38-s + 273·40-s − 48.4·41-s + ⋯
L(s)  = 1  + 0.612·2-s − 0.625·4-s − 1.08·5-s − 1.18·7-s − 0.995·8-s − 0.664·10-s + 1.61·11-s − 1.04·13-s − 0.727·14-s + 0.0156·16-s + 0.518·17-s − 0.845·19-s + 0.677·20-s + 0.988·22-s + 0.219·23-s + 0.175·25-s − 0.640·26-s + 0.742·28-s − 1.78·29-s − 0.648·31-s + 1.00·32-s + 0.317·34-s + 1.28·35-s + 1.24·37-s − 0.517·38-s + 1.07·40-s − 0.184·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-1$
Analytic conductor: \(4.77915\)
Root analytic conductor: \(2.18612\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 1.73T + 8T^{2} \)
5 \( 1 + 12.1T + 125T^{2} \)
7 \( 1 + 22T + 343T^{2} \)
11 \( 1 - 58.8T + 1.33e3T^{2} \)
13 \( 1 + 49T + 2.19e3T^{2} \)
17 \( 1 - 36.3T + 4.91e3T^{2} \)
19 \( 1 + 70T + 6.85e3T^{2} \)
23 \( 1 - 24.2T + 1.21e4T^{2} \)
29 \( 1 + 278.T + 2.43e4T^{2} \)
31 \( 1 + 112T + 2.97e4T^{2} \)
37 \( 1 - 281T + 5.06e4T^{2} \)
41 \( 1 + 48.4T + 6.89e4T^{2} \)
43 \( 1 - 50T + 7.95e4T^{2} \)
47 \( 1 + 242.T + 1.03e5T^{2} \)
53 \( 1 - 374.T + 1.48e5T^{2} \)
59 \( 1 - 96.9T + 2.05e5T^{2} \)
61 \( 1 + 679T + 2.26e5T^{2} \)
67 \( 1 + 274T + 3.00e5T^{2} \)
71 \( 1 + 446.T + 3.57e5T^{2} \)
73 \( 1 + 511T + 3.89e5T^{2} \)
79 \( 1 + 526T + 4.93e5T^{2} \)
83 \( 1 + 387.T + 5.71e5T^{2} \)
89 \( 1 + 36.3T + 7.04e5T^{2} \)
97 \( 1 - 1.77e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15995712429744555116308612514, −12.38042181225703724143146957743, −11.55149289936280562329640042957, −9.758684047212521677458891953231, −8.942896381163664759099998333096, −7.36239258677455043181188058848, −6.04482244989724912855888469316, −4.31398066036974669701650558322, −3.43507782157423252473590756521, 0, 3.43507782157423252473590756521, 4.31398066036974669701650558322, 6.04482244989724912855888469316, 7.36239258677455043181188058848, 8.942896381163664759099998333096, 9.758684047212521677458891953231, 11.55149289936280562329640042957, 12.38042181225703724143146957743, 13.15995712429744555116308612514

Graph of the $Z$-function along the critical line