Properties

Label 2-3e4-9.4-c7-0-15
Degree $2$
Conductor $81$
Sign $0.342 - 0.939i$
Analytic cond. $25.3031$
Root an. cond. $5.03022$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (6.69 + 11.5i)2-s + (−25.5 + 44.2i)4-s + (36.7 − 63.5i)5-s + (242. + 419. i)7-s + 1.02e3·8-s + 982.·10-s + (−1.29e3 − 2.24e3i)11-s + (2.98e3 − 5.16e3i)13-s + (−3.23e3 + 5.61e3i)14-s + (1.01e4 + 1.75e4i)16-s + 1.59e4·17-s + 5.14e4·19-s + (1.87e3 + 3.24e3i)20-s + (1.73e4 − 3.00e4i)22-s + (−4.58e4 + 7.94e4i)23-s + ⋯
L(s)  = 1  + (0.591 + 1.02i)2-s + (−0.199 + 0.345i)4-s + (0.131 − 0.227i)5-s + (0.266 + 0.462i)7-s + 0.710·8-s + 0.310·10-s + (−0.293 − 0.509i)11-s + (0.376 − 0.652i)13-s + (−0.315 + 0.546i)14-s + (0.619 + 1.07i)16-s + 0.788·17-s + 1.72·19-s + (0.0524 + 0.0908i)20-s + (0.347 − 0.602i)22-s + (−0.785 + 1.36i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.342 - 0.939i$
Analytic conductor: \(25.3031\)
Root analytic conductor: \(5.03022\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :7/2),\ 0.342 - 0.939i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.66980 + 1.86941i\)
\(L(\frac12)\) \(\approx\) \(2.66980 + 1.86941i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-6.69 - 11.5i)T + (-64 + 110. i)T^{2} \)
5 \( 1 + (-36.7 + 63.5i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (-242. - 419. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (1.29e3 + 2.24e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (-2.98e3 + 5.16e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 - 1.59e4T + 4.10e8T^{2} \)
19 \( 1 - 5.14e4T + 8.93e8T^{2} \)
23 \( 1 + (4.58e4 - 7.94e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-4.26e4 - 7.39e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-6.77e4 + 1.17e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + 4.23e5T + 9.49e10T^{2} \)
41 \( 1 + (-5.22e4 + 9.04e4i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (1.55e5 + 2.69e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (-5.99e5 - 1.03e6i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + 7.66e5T + 1.17e12T^{2} \)
59 \( 1 + (-6.74e4 + 1.16e5i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-4.39e5 - 7.61e5i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (-1.52e6 + 2.63e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 - 4.43e5T + 9.09e12T^{2} \)
73 \( 1 - 6.02e6T + 1.10e13T^{2} \)
79 \( 1 + (-2.98e5 - 5.17e5i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (2.33e6 + 4.04e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 + 1.14e7T + 4.42e13T^{2} \)
97 \( 1 + (6.20e6 + 1.07e7i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56170342301616087515732149746, −12.27917158770970357187030084481, −11.02481993470055121249566220660, −9.699276385044327744364243691581, −8.222460704241882106616956941563, −7.30459119617944041085878199870, −5.71436850383648735110205173974, −5.26324604177780260385956446028, −3.41354604521947737138826831529, −1.28917262542250503065983188740, 1.14397065115995547204914000360, 2.54902262028986452249406103302, 3.87182317219106932994609749204, 5.06302848225349489217551834086, 6.87561282131634525447258269652, 8.102891055630095513268488842142, 9.880630170102013852562369565748, 10.62885462412874795376304373742, 11.80884997684708726346416123979, 12.46517710184846802042935588861

Graph of the $Z$-function along the critical line