L(s) = 1 | − 4-s + 2·5-s + 4·11-s + 16-s − 12·19-s − 2·20-s − 25-s + 18·29-s − 4·31-s + 22·41-s − 4·44-s + 13·49-s + 8·55-s − 8·59-s − 14·61-s − 64-s + 12·71-s + 12·76-s + 24·79-s + 2·80-s + 2·89-s − 24·95-s + 100-s − 4·101-s − 14·109-s − 18·116-s − 10·121-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.894·5-s + 1.20·11-s + 1/4·16-s − 2.75·19-s − 0.447·20-s − 1/5·25-s + 3.34·29-s − 0.718·31-s + 3.43·41-s − 0.603·44-s + 13/7·49-s + 1.07·55-s − 1.04·59-s − 1.79·61-s − 1/8·64-s + 1.42·71-s + 1.37·76-s + 2.70·79-s + 0.223·80-s + 0.211·89-s − 2.46·95-s + 1/10·100-s − 0.398·101-s − 1.34·109-s − 1.67·116-s − 0.909·121-s + ⋯ |
Λ(s)=(=(656100s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(656100s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
656100
= 22⋅38⋅52
|
Sign: |
1
|
Analytic conductor: |
41.8335 |
Root analytic conductor: |
2.54320 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 656100, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.154909272 |
L(21) |
≈ |
2.154909272 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+T2 |
| 3 | | 1 |
| 5 | C2 | 1−2T+pT2 |
good | 7 | C22 | 1−13T2+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 13 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C22 | 1−45T2+p2T4 |
| 29 | C2 | (1−9T+pT2)2 |
| 31 | C2 | (1+2T+pT2)2 |
| 37 | C2 | (1−12T+pT2)(1+12T+pT2) |
| 41 | C2 | (1−11T+pT2)2 |
| 43 | C22 | 1−70T2+p2T4 |
| 47 | C22 | 1−45T2+p2T4 |
| 53 | C2 | (1−pT2)2 |
| 59 | C2 | (1+4T+pT2)2 |
| 61 | C2 | (1+7T+pT2)2 |
| 67 | C22 | 1−13T2+p2T4 |
| 71 | C2 | (1−6T+pT2)2 |
| 73 | C22 | 1−130T2+p2T4 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | C22 | 1−45T2+p2T4 |
| 89 | C2 | (1−T+pT2)2 |
| 97 | C2 | (1−18T+pT2)(1+18T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52197178555317896387040196744, −10.04800974545498629268388419157, −9.514610391712751301862732595419, −9.081051582027114513545492207488, −8.953718065377669895966000325791, −8.529198657071138783898618119802, −7.77448706034300682021961158555, −7.75830231638378720781233462230, −6.62177574132703477385759901646, −6.55531831013259950064366906937, −6.20225897781143317383225486233, −5.78117883331226330388537252732, −5.02367800095249948598548689840, −4.56947758903200268615128018521, −4.03473183604154958924012162300, −3.88574082540073227006508084181, −2.60642453590614127625623953694, −2.51285276101068256897793327535, −1.57985110452461566651549498578, −0.77682335440868122790515043342,
0.77682335440868122790515043342, 1.57985110452461566651549498578, 2.51285276101068256897793327535, 2.60642453590614127625623953694, 3.88574082540073227006508084181, 4.03473183604154958924012162300, 4.56947758903200268615128018521, 5.02367800095249948598548689840, 5.78117883331226330388537252732, 6.20225897781143317383225486233, 6.55531831013259950064366906937, 6.62177574132703477385759901646, 7.75830231638378720781233462230, 7.77448706034300682021961158555, 8.529198657071138783898618119802, 8.953718065377669895966000325791, 9.081051582027114513545492207488, 9.514610391712751301862732595419, 10.04800974545498629268388419157, 10.52197178555317896387040196744