L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−1.86 − 1.23i)5-s + (−1.70 + 1.70i)7-s + (−0.707 + 0.707i)8-s + (−0.442 − 2.19i)10-s − 1.14i·11-s + (−1.74 − 1.74i)13-s − 2.40·14-s − 1.00·16-s + (−4.99 − 4.99i)17-s − 2.78i·19-s + (1.23 − 1.86i)20-s + (0.809 − 0.809i)22-s + (4.36 − 4.36i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.833 − 0.553i)5-s + (−0.642 + 0.642i)7-s + (−0.250 + 0.250i)8-s + (−0.139 − 0.693i)10-s − 0.345i·11-s + (−0.485 − 0.485i)13-s − 0.642·14-s − 0.250·16-s + (−1.21 − 1.21i)17-s − 0.638i·19-s + (0.276 − 0.416i)20-s + (0.172 − 0.172i)22-s + (0.909 − 0.909i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.347 + 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.347 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.283420 - 0.407066i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.283420 - 0.407066i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.86 + 1.23i)T \) |
good | 7 | \( 1 + (1.70 - 1.70i)T - 7iT^{2} \) |
| 11 | \( 1 + 1.14iT - 11T^{2} \) |
| 13 | \( 1 + (1.74 + 1.74i)T + 13iT^{2} \) |
| 17 | \( 1 + (4.99 + 4.99i)T + 17iT^{2} \) |
| 19 | \( 1 + 2.78iT - 19T^{2} \) |
| 23 | \( 1 + (-4.36 + 4.36i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.34T + 29T^{2} \) |
| 31 | \( 1 + 2.50T + 31T^{2} \) |
| 37 | \( 1 + (8.16 - 8.16i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.97iT - 41T^{2} \) |
| 43 | \( 1 + (6.35 + 6.35i)T + 43iT^{2} \) |
| 47 | \( 1 + (8.72 + 8.72i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.84 + 1.84i)T - 53iT^{2} \) |
| 59 | \( 1 + 2.62T + 59T^{2} \) |
| 61 | \( 1 - 7.08T + 61T^{2} \) |
| 67 | \( 1 + (0.0399 - 0.0399i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.10iT - 71T^{2} \) |
| 73 | \( 1 + (-7.82 - 7.82i)T + 73iT^{2} \) |
| 79 | \( 1 - 9.77iT - 79T^{2} \) |
| 83 | \( 1 + (-1.98 + 1.98i)T - 83iT^{2} \) |
| 89 | \( 1 + 4.87T + 89T^{2} \) |
| 97 | \( 1 + (-5.70 + 5.70i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.827329742137320520484555992219, −8.786568113465134548292843729176, −8.477322468483695043339990928871, −7.12762615242570493469813671135, −6.71137242308416593885391668467, −5.28476679735240667140669180217, −4.83137034515960455262467313154, −3.54974824791454236607439300444, −2.60898329377865589798773675898, −0.19696937605621904112552823985,
1.86814080935002729168001847055, 3.30093884028834231012414015900, 3.94043499641000083608847629606, 4.88270827079224436073461357652, 6.28571170681968801677680153205, 6.94643417231554815402536761155, 7.78718722523055706442235126376, 8.975989236698145076715490314097, 9.873749413224757105738041446861, 10.71578376580636163957864428215