L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−2.18 − 0.495i)5-s + (−2.74 − 2.74i)7-s + (0.707 + 0.707i)8-s + (1.89 − 1.19i)10-s + 3.97i·11-s + (−0.700 + 0.700i)13-s + 3.88·14-s − 1.00·16-s + (−0.120 + 0.120i)17-s − 1.88i·19-s + (−0.495 + 2.18i)20-s + (−2.80 − 2.80i)22-s + (3.72 + 3.72i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.975 − 0.221i)5-s + (−1.03 − 1.03i)7-s + (0.250 + 0.250i)8-s + (0.598 − 0.376i)10-s + 1.19i·11-s + (−0.194 + 0.194i)13-s + 1.03·14-s − 0.250·16-s + (−0.0291 + 0.0291i)17-s − 0.432i·19-s + (−0.110 + 0.487i)20-s + (−0.599 − 0.599i)22-s + (0.776 + 0.776i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.439 - 0.898i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.439 - 0.898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.602569 + 0.375991i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.602569 + 0.375991i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.18 + 0.495i)T \) |
good | 7 | \( 1 + (2.74 + 2.74i)T + 7iT^{2} \) |
| 11 | \( 1 - 3.97iT - 11T^{2} \) |
| 13 | \( 1 + (0.700 - 0.700i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.120 - 0.120i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.88iT - 19T^{2} \) |
| 23 | \( 1 + (-3.72 - 3.72i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.31T + 29T^{2} \) |
| 31 | \( 1 - 9.40T + 31T^{2} \) |
| 37 | \( 1 + (-3.26 - 3.26i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.26iT - 41T^{2} \) |
| 43 | \( 1 + (-1.45 + 1.45i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2.45 + 2.45i)T - 47iT^{2} \) |
| 53 | \( 1 + (3.66 + 3.66i)T + 53iT^{2} \) |
| 59 | \( 1 + 5.45T + 59T^{2} \) |
| 61 | \( 1 - 8.71T + 61T^{2} \) |
| 67 | \( 1 + (5.75 + 5.75i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.94iT - 71T^{2} \) |
| 73 | \( 1 + (8.27 - 8.27i)T - 73iT^{2} \) |
| 79 | \( 1 - 13.5iT - 79T^{2} \) |
| 83 | \( 1 + (4.94 + 4.94i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.87T + 89T^{2} \) |
| 97 | \( 1 + (1.05 + 1.05i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06931514978325191236425024216, −9.697647061207494437991036617588, −8.624117443093859994907272764383, −7.68824937579167305107455513193, −7.04302975040357986322677610959, −6.46740259611919644834160619252, −4.88451897736290822071961891230, −4.20430060230829699414694538128, −2.95821592087078677514964756306, −0.967389410878443511087429420728,
0.56005872926030927009916394932, 2.72268537432963120114663724698, 3.21739541814227497467464076070, 4.45403683862826170145043396906, 5.86442662794818481332635282093, 6.64859056451265017857459989479, 7.76649259701336625149542124271, 8.596580621791277186806089058092, 9.094795125756275675199371145829, 10.21078678845686820698632607445