L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.133 + 2.23i)5-s + (−1.73 + i)7-s + 0.999i·8-s + (−1 − 1.99i)10-s + (1 + 1.73i)11-s + (−5.19 − 3i)13-s + (0.999 − 1.73i)14-s + (−0.5 − 0.866i)16-s + 2i·17-s + (1.86 + 1.23i)20-s + (−1.73 − 0.999i)22-s + (−3.46 − 2i)23-s + (−4.96 − 0.598i)25-s + 6·26-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.0599 + 0.998i)5-s + (−0.654 + 0.377i)7-s + 0.353i·8-s + (−0.316 − 0.632i)10-s + (0.301 + 0.522i)11-s + (−1.44 − 0.832i)13-s + (0.267 − 0.462i)14-s + (−0.125 − 0.216i)16-s + 0.485i·17-s + (0.417 + 0.275i)20-s + (−0.369 − 0.213i)22-s + (−0.722 − 0.417i)23-s + (−0.992 − 0.119i)25-s + 1.17·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.803 + 0.595i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.803 + 0.595i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0495725 - 0.150047i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0495725 - 0.150047i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.133 - 2.23i)T \) |
good | 7 | \( 1 + (1.73 - i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (5.19 + 3i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (3.46 + 2i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + (-1 + 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.46 - 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.92 - 4i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 6iT - 53T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1 + 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.92 + 4i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.46 + 2i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (-6.92 + 4i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35443652003373093948879808569, −9.989861149836485816101968818152, −9.237050423315198991024725686187, −7.990012882917082860832994589526, −7.43395902468856121834926917469, −6.47949295941319424134878707995, −5.85438300087007503244714141412, −4.52330383227847479585652771621, −3.10341379116708057205929908035, −2.17890744469028945495890594484,
0.091413956349506470307452914209, 1.59464547805471948132622686554, 3.01972959333313213593525001656, 4.20432973635725800949346151524, 5.12939463696529160850278545433, 6.43385647378588617098655425467, 7.26943802593790705951199392955, 8.204656042193831365106203067425, 9.053470736315173201399896386020, 9.691650129231506761982155647375