L(s) = 1 | + (−0.989 + 0.144i)2-s + (−0.107 − 1.72i)3-s + (0.957 − 0.286i)4-s + (0.876 + 2.05i)5-s + (0.356 + 1.69i)6-s + (−3.77 − 0.109i)7-s + (−0.906 + 0.422i)8-s + (−2.97 + 0.371i)9-s + (−1.16 − 1.90i)10-s + (1.80 − 3.59i)11-s + (−0.598 − 1.62i)12-s + (−1.47 + 0.585i)13-s + (3.75 − 0.438i)14-s + (3.46 − 1.73i)15-s + (0.835 − 0.549i)16-s + (0.414 + 4.73i)17-s + ⋯ |
L(s) = 1 | + (−0.699 + 0.102i)2-s + (−0.0619 − 0.998i)3-s + (0.478 − 0.143i)4-s + (0.391 + 0.920i)5-s + (0.145 + 0.691i)6-s + (−1.42 − 0.0415i)7-s + (−0.320 + 0.149i)8-s + (−0.992 + 0.123i)9-s + (−0.368 − 0.603i)10-s + (0.544 − 1.08i)11-s + (−0.172 − 0.469i)12-s + (−0.408 + 0.162i)13-s + (1.00 − 0.117i)14-s + (0.893 − 0.448i)15-s + (0.208 − 0.137i)16-s + (0.100 + 1.14i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.368 - 0.929i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.368 - 0.929i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.557975 + 0.378824i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.557975 + 0.378824i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.989 - 0.144i)T \) |
| 3 | \( 1 + (0.107 + 1.72i)T \) |
| 5 | \( 1 + (-0.876 - 2.05i)T \) |
good | 7 | \( 1 + (3.77 + 0.109i)T + (6.98 + 0.407i)T^{2} \) |
| 11 | \( 1 + (-1.80 + 3.59i)T + (-6.56 - 8.82i)T^{2} \) |
| 13 | \( 1 + (1.47 - 0.585i)T + (9.45 - 8.92i)T^{2} \) |
| 17 | \( 1 + (-0.414 - 4.73i)T + (-16.7 + 2.95i)T^{2} \) |
| 19 | \( 1 + (-4.16 - 4.96i)T + (-3.29 + 18.7i)T^{2} \) |
| 23 | \( 1 + (0.0834 + 2.86i)T + (-22.9 + 1.33i)T^{2} \) |
| 29 | \( 1 + (2.87 + 0.336i)T + (28.2 + 6.68i)T^{2} \) |
| 31 | \( 1 + (-6.28 - 1.48i)T + (27.7 + 13.9i)T^{2} \) |
| 37 | \( 1 + (-5.55 - 7.93i)T + (-12.6 + 34.7i)T^{2} \) |
| 41 | \( 1 + (6.75 - 5.03i)T + (11.7 - 39.2i)T^{2} \) |
| 43 | \( 1 + (7.41 - 8.33i)T + (-4.99 - 42.7i)T^{2} \) |
| 47 | \( 1 + (-4.19 - 2.58i)T + (21.0 + 42.0i)T^{2} \) |
| 53 | \( 1 + (1.58 + 5.90i)T + (-45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.98 + 2.00i)T + (35.2 - 47.3i)T^{2} \) |
| 61 | \( 1 + (-1.53 + 5.11i)T + (-50.9 - 33.5i)T^{2} \) |
| 67 | \( 1 + (9.46 - 11.9i)T + (-15.4 - 65.1i)T^{2} \) |
| 71 | \( 1 + (-4.58 - 12.6i)T + (-54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + (-3.78 - 8.11i)T + (-46.9 + 55.9i)T^{2} \) |
| 79 | \( 1 + (-2.10 - 1.56i)T + (22.6 + 75.6i)T^{2} \) |
| 83 | \( 1 + (1.90 + 12.9i)T + (-79.5 + 23.8i)T^{2} \) |
| 89 | \( 1 + (-4.50 - 1.64i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-0.122 + 0.591i)T + (-89.0 - 38.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09461594213131451387019432553, −9.797783114928739643422647773786, −8.559420551779368108094916252972, −7.87956703668907799884834693680, −6.72121623797007372178573699826, −6.40003510218557383237441698867, −5.74158953119992483283732318083, −3.46548516941200369292863503148, −2.79353157679119434949836362997, −1.33145795286591119959804846543,
0.44232413511336212455114586692, 2.42493669905844492496803966356, 3.53747273193298764788535502852, 4.73813837792572532710214326845, 5.56493588818796722375015708573, 6.68921223503037476691431833484, 7.56021294577269823006722018776, 8.965906309647161270898926595352, 9.429762840698098094139217933987, 9.699385227217420714538974538253