Properties

Label 2-810-3.2-c2-0-13
Degree $2$
Conductor $810$
Sign $-i$
Analytic cond. $22.0709$
Root an. cond. $4.69796$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41i·2-s − 2.00·4-s + 2.23i·5-s − 1.37·7-s − 2.82i·8-s − 3.16·10-s − 10.6i·11-s + 9.84·13-s − 1.94i·14-s + 4.00·16-s + 3.83i·17-s + 16.2·19-s − 4.47i·20-s + 14.9·22-s + 31.0i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 0.447i·5-s − 0.196·7-s − 0.353i·8-s − 0.316·10-s − 0.963i·11-s + 0.757·13-s − 0.138i·14-s + 0.250·16-s + 0.225i·17-s + 0.856·19-s − 0.223i·20-s + 0.681·22-s + 1.35i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 810 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(810\)    =    \(2 \cdot 3^{4} \cdot 5\)
Sign: $-i$
Analytic conductor: \(22.0709\)
Root analytic conductor: \(4.69796\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{810} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 810,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.695983573\)
\(L(\frac12)\) \(\approx\) \(1.695983573\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.41iT \)
3 \( 1 \)
5 \( 1 - 2.23iT \)
good7 \( 1 + 1.37T + 49T^{2} \)
11 \( 1 + 10.6iT - 121T^{2} \)
13 \( 1 - 9.84T + 169T^{2} \)
17 \( 1 - 3.83iT - 289T^{2} \)
19 \( 1 - 16.2T + 361T^{2} \)
23 \( 1 - 31.0iT - 529T^{2} \)
29 \( 1 + 19.6iT - 841T^{2} \)
31 \( 1 - 43.8T + 961T^{2} \)
37 \( 1 - 35.1T + 1.36e3T^{2} \)
41 \( 1 - 71.1iT - 1.68e3T^{2} \)
43 \( 1 + 43.8T + 1.84e3T^{2} \)
47 \( 1 - 72.9iT - 2.20e3T^{2} \)
53 \( 1 + 62.2iT - 2.80e3T^{2} \)
59 \( 1 + 29.8iT - 3.48e3T^{2} \)
61 \( 1 - 108.T + 3.72e3T^{2} \)
67 \( 1 + 65.0T + 4.48e3T^{2} \)
71 \( 1 - 90.6iT - 5.04e3T^{2} \)
73 \( 1 - 71.2T + 5.32e3T^{2} \)
79 \( 1 - 14.4T + 6.24e3T^{2} \)
83 \( 1 - 134. iT - 6.88e3T^{2} \)
89 \( 1 - 102. iT - 7.92e3T^{2} \)
97 \( 1 - 159.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.999353365731592035114468203520, −9.466348867195349471555869571711, −8.270741295896152019375325449959, −7.85073446532934751305755253294, −6.60138142359804482045796361707, −6.09087914645179746413168756976, −5.11523200692666409645586721759, −3.82748754199139512118378361930, −2.97260873853415694002325496722, −1.07641360370895090022098877124, 0.72727677592140340830011173661, 2.02435220502083696070657925213, 3.23952868352852307015344614488, 4.35186101289700997174545395808, 5.12375123681032759131625141310, 6.29771455681706046909034578517, 7.32244114601128638000420165610, 8.394338805092816030714514256899, 9.060465761080100343148046339260, 9.984227662331636155269457179444

Graph of the $Z$-function along the critical line