L(s) = 1 | + 1.41i·2-s − 2.00·4-s + 2.23i·5-s − 1.37·7-s − 2.82i·8-s − 3.16·10-s − 10.6i·11-s + 9.84·13-s − 1.94i·14-s + 4.00·16-s + 3.83i·17-s + 16.2·19-s − 4.47i·20-s + 14.9·22-s + 31.0i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.500·4-s + 0.447i·5-s − 0.196·7-s − 0.353i·8-s − 0.316·10-s − 0.963i·11-s + 0.757·13-s − 0.138i·14-s + 0.250·16-s + 0.225i·17-s + 0.856·19-s − 0.223i·20-s + 0.681·22-s + 1.35i·23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)−iΛ(3−s)
Λ(s)=(=(810s/2ΓC(s+1)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
−i
|
Analytic conductor: |
22.0709 |
Root analytic conductor: |
4.69796 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :1), −i)
|
Particular Values
L(23) |
≈ |
1.695983573 |
L(21) |
≈ |
1.695983573 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41iT |
| 3 | 1 |
| 5 | 1−2.23iT |
good | 7 | 1+1.37T+49T2 |
| 11 | 1+10.6iT−121T2 |
| 13 | 1−9.84T+169T2 |
| 17 | 1−3.83iT−289T2 |
| 19 | 1−16.2T+361T2 |
| 23 | 1−31.0iT−529T2 |
| 29 | 1+19.6iT−841T2 |
| 31 | 1−43.8T+961T2 |
| 37 | 1−35.1T+1.36e3T2 |
| 41 | 1−71.1iT−1.68e3T2 |
| 43 | 1+43.8T+1.84e3T2 |
| 47 | 1−72.9iT−2.20e3T2 |
| 53 | 1+62.2iT−2.80e3T2 |
| 59 | 1+29.8iT−3.48e3T2 |
| 61 | 1−108.T+3.72e3T2 |
| 67 | 1+65.0T+4.48e3T2 |
| 71 | 1−90.6iT−5.04e3T2 |
| 73 | 1−71.2T+5.32e3T2 |
| 79 | 1−14.4T+6.24e3T2 |
| 83 | 1−134.iT−6.88e3T2 |
| 89 | 1−102.iT−7.92e3T2 |
| 97 | 1−159.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.999353365731592035114468203520, −9.466348867195349471555869571711, −8.270741295896152019375325449959, −7.85073446532934751305755253294, −6.60138142359804482045796361707, −6.09087914645179746413168756976, −5.11523200692666409645586721759, −3.82748754199139512118378361930, −2.97260873853415694002325496722, −1.07641360370895090022098877124,
0.72727677592140340830011173661, 2.02435220502083696070657925213, 3.23952868352852307015344614488, 4.35186101289700997174545395808, 5.12375123681032759131625141310, 6.29771455681706046909034578517, 7.32244114601128638000420165610, 8.394338805092816030714514256899, 9.060465761080100343148046339260, 9.984227662331636155269457179444