L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 2.23i·5-s − 1.06·7-s + 2.82i·8-s + 3.16·10-s + 0.743i·11-s − 3.34·13-s + 1.50i·14-s + 4.00·16-s − 27.5i·17-s + 6.98·19-s − 4.47i·20-s + 1.05·22-s + 31.9i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + 0.447i·5-s − 0.151·7-s + 0.353i·8-s + 0.316·10-s + 0.0675i·11-s − 0.257·13-s + 0.107i·14-s + 0.250·16-s − 1.62i·17-s + 0.367·19-s − 0.223i·20-s + 0.0477·22-s + 1.38i·23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)−iΛ(3−s)
Λ(s)=(=(810s/2ΓC(s+1)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
−i
|
Analytic conductor: |
22.0709 |
Root analytic conductor: |
4.69796 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :1), −i)
|
Particular Values
L(23) |
≈ |
0.6981695643 |
L(21) |
≈ |
0.6981695643 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
| 5 | 1−2.23iT |
good | 7 | 1+1.06T+49T2 |
| 11 | 1−0.743iT−121T2 |
| 13 | 1+3.34T+169T2 |
| 17 | 1+27.5iT−289T2 |
| 19 | 1−6.98T+361T2 |
| 23 | 1−31.9iT−529T2 |
| 29 | 1−48.9iT−841T2 |
| 31 | 1+47.6T+961T2 |
| 37 | 1+31.0T+1.36e3T2 |
| 41 | 1−3.95iT−1.68e3T2 |
| 43 | 1+2.93T+1.84e3T2 |
| 47 | 1−67.9iT−2.20e3T2 |
| 53 | 1−40.2iT−2.80e3T2 |
| 59 | 1−7.63iT−3.48e3T2 |
| 61 | 1−66.5T+3.72e3T2 |
| 67 | 1+23.1T+4.48e3T2 |
| 71 | 1−103.iT−5.04e3T2 |
| 73 | 1+127.T+5.32e3T2 |
| 79 | 1+53.8T+6.24e3T2 |
| 83 | 1+96.2iT−6.88e3T2 |
| 89 | 1−54.5iT−7.92e3T2 |
| 97 | 1+40.4T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28097368530386303067545986126, −9.476608200000072264816730627427, −8.914579927345182233383591434395, −7.53748659789227394002086942787, −7.04851346880608601947509879349, −5.64233635929329736015265911662, −4.87309549588299135139500778715, −3.55290748280356609515732830131, −2.81063948627980814993746525638, −1.44812738972558057628546339892,
0.23653998284348764922500713510, 1.93014570941731228284661198040, 3.58313084179476109013421820327, 4.49181874821930126654352968674, 5.53925284201178411811381627454, 6.29808893952676854191668881825, 7.24017263704706710115552641107, 8.240570722787287986929595453417, 8.726414845104979603020106180327, 9.785710856710900509289637132436