L(s) = 1 | + (−0.707 + 1.22i)2-s + (−0.999 − 1.73i)4-s + (−4.24 − 2.64i)5-s + (−11.8 − 6.84i)7-s + 2.82·8-s + (6.24 − 3.32i)10-s + (−10.6 − 6.15i)11-s + (−14.7 + 8.50i)13-s + (16.7 − 9.67i)14-s + (−2.00 + 3.46i)16-s + 6.89·17-s − 7.24·19-s + (−0.346 + 9.99i)20-s + (15.0 − 8.70i)22-s + (−17.3 − 30.1i)23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.848 − 0.529i)5-s + (−1.69 − 0.977i)7-s + 0.353·8-s + (0.624 − 0.332i)10-s + (−0.969 − 0.559i)11-s + (−1.13 + 0.654i)13-s + (1.19 − 0.691i)14-s + (−0.125 + 0.216i)16-s + 0.405·17-s − 0.381·19-s + (−0.0173 + 0.499i)20-s + (0.685 − 0.395i)22-s + (−0.756 − 1.31i)23-s + ⋯ |
Λ(s)=(=(810s/2ΓC(s)L(s)(0.207−0.978i)Λ(3−s)
Λ(s)=(=(810s/2ΓC(s+1)L(s)(0.207−0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
810
= 2⋅34⋅5
|
Sign: |
0.207−0.978i
|
Analytic conductor: |
22.0709 |
Root analytic conductor: |
4.69796 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ810(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 810, ( :1), 0.207−0.978i)
|
Particular Values
L(23) |
≈ |
0.2461122161 |
L(21) |
≈ |
0.2461122161 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−1.22i)T |
| 3 | 1 |
| 5 | 1+(4.24+2.64i)T |
good | 7 | 1+(11.8+6.84i)T+(24.5+42.4i)T2 |
| 11 | 1+(10.6+6.15i)T+(60.5+104.i)T2 |
| 13 | 1+(14.7−8.50i)T+(84.5−146.i)T2 |
| 17 | 1−6.89T+289T2 |
| 19 | 1+7.24T+361T2 |
| 23 | 1+(17.3+30.1i)T+(−264.5+458.i)T2 |
| 29 | 1+(−18.3−10.5i)T+(420.5+728.i)T2 |
| 31 | 1+(−19.1−33.0i)T+(−480.5+832.i)T2 |
| 37 | 1+21.5iT−1.36e3T2 |
| 41 | 1+(−31.4+18.1i)T+(840.5−1.45e3i)T2 |
| 43 | 1+(5.40+3.11i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(−20.1+34.8i)T+(−1.10e3−1.91e3i)T2 |
| 53 | 1−38.2T+2.80e3T2 |
| 59 | 1+(36.0−20.8i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−7.52+13.0i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(111.−64.3i)T+(2.24e3−3.88e3i)T2 |
| 71 | 1+104.iT−5.04e3T2 |
| 73 | 1−2.11iT−5.32e3T2 |
| 79 | 1+(−22.0+38.1i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−27.5+47.6i)T+(−3.44e3−5.96e3i)T2 |
| 89 | 1−68.1iT−7.92e3T2 |
| 97 | 1+(87.6+50.6i)T+(4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28956798494027366298111407299, −9.286196382897542205465696607985, −8.498341823528658141168720608510, −7.53999544229502545546858311238, −6.96085629642522510578021725670, −6.06630321402146009790274767316, −4.83245970543263564561203747742, −3.96991360697020507313288918671, −2.81393725788715210346190998928, −0.59573891358505706121519967929,
0.17087934155385081822813630987, 2.55523594474710831199619177002, 2.94399051906611577100944918549, 4.12334414334476920317549091466, 5.43851261271415473900831965462, 6.45275355638705832968510965928, 7.54092451314877124607053673261, 8.060892410297131555419314410956, 9.331659504257992193053940161893, 9.933369447760236578170390557726