Properties

Label 2-90e2-1.1-c1-0-73
Degree $2$
Conductor $8100$
Sign $-1$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.85·7-s + 4.85·11-s − 5.85·13-s − 7.85·17-s + 2·19-s − 1.85·23-s + 9.70·29-s − 10.7·31-s + 0.854·37-s − 8.56·41-s − 5.85·43-s − 6.70·47-s + 7.85·49-s + 1.85·53-s − 7.85·59-s − 5.85·61-s − 7·67-s − 9·71-s − 10.7·73-s + 18.7·77-s − 1.70·79-s + 6.70·83-s + 12·89-s − 22.5·91-s − 10·97-s + 1.85·101-s + 6.85·103-s + ⋯
L(s)  = 1  + 1.45·7-s + 1.46·11-s − 1.62·13-s − 1.90·17-s + 0.458·19-s − 0.386·23-s + 1.80·29-s − 1.92·31-s + 0.140·37-s − 1.33·41-s − 0.892·43-s − 0.978·47-s + 1.12·49-s + 0.254·53-s − 1.02·59-s − 0.749·61-s − 0.855·67-s − 1.06·71-s − 1.25·73-s + 2.13·77-s − 0.192·79-s + 0.736·83-s + 1.27·89-s − 2.36·91-s − 1.01·97-s + 0.184·101-s + 0.675·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3.85T + 7T^{2} \)
11 \( 1 - 4.85T + 11T^{2} \)
13 \( 1 + 5.85T + 13T^{2} \)
17 \( 1 + 7.85T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 1.85T + 23T^{2} \)
29 \( 1 - 9.70T + 29T^{2} \)
31 \( 1 + 10.7T + 31T^{2} \)
37 \( 1 - 0.854T + 37T^{2} \)
41 \( 1 + 8.56T + 41T^{2} \)
43 \( 1 + 5.85T + 43T^{2} \)
47 \( 1 + 6.70T + 47T^{2} \)
53 \( 1 - 1.85T + 53T^{2} \)
59 \( 1 + 7.85T + 59T^{2} \)
61 \( 1 + 5.85T + 61T^{2} \)
67 \( 1 + 7T + 67T^{2} \)
71 \( 1 + 9T + 71T^{2} \)
73 \( 1 + 10.7T + 73T^{2} \)
79 \( 1 + 1.70T + 79T^{2} \)
83 \( 1 - 6.70T + 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41244401095218241510295828520, −6.87422441239768366869717959718, −6.22368863113951206636290610991, −5.11606487029049109194830953413, −4.69212994732545970290370627731, −4.15264310473703626780455690062, −3.03921043223235942382647659503, −1.99656971868463561027860322453, −1.51376062726110985846512672776, 0, 1.51376062726110985846512672776, 1.99656971868463561027860322453, 3.03921043223235942382647659503, 4.15264310473703626780455690062, 4.69212994732545970290370627731, 5.11606487029049109194830953413, 6.22368863113951206636290610991, 6.87422441239768366869717959718, 7.41244401095218241510295828520

Graph of the $Z$-function along the critical line