L(s) = 1 | + 2·7-s − 4·13-s − 6·17-s − 2·19-s + 12·29-s − 2·31-s + 2·37-s + 12·41-s − 10·43-s − 6·47-s − 8·49-s − 18·53-s + 12·59-s − 8·61-s + 8·67-s + 12·71-s − 10·73-s − 8·79-s − 6·83-s − 8·91-s + 2·97-s + 12·101-s − 16·103-s − 2·109-s − 18·113-s − 12·119-s − 19·121-s + ⋯ |
L(s) = 1 | + 0.755·7-s − 1.10·13-s − 1.45·17-s − 0.458·19-s + 2.22·29-s − 0.359·31-s + 0.328·37-s + 1.87·41-s − 1.52·43-s − 0.875·47-s − 8/7·49-s − 2.47·53-s + 1.56·59-s − 1.02·61-s + 0.977·67-s + 1.42·71-s − 1.17·73-s − 0.900·79-s − 0.658·83-s − 0.838·91-s + 0.203·97-s + 1.19·101-s − 1.57·103-s − 0.191·109-s − 1.69·113-s − 1.10·119-s − 1.72·121-s + ⋯ |
Λ(s)=(=(65610000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(65610000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
65610000
= 24⋅38⋅54
|
Sign: |
1
|
Analytic conductor: |
4183.35 |
Root analytic conductor: |
8.04231 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 65610000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | | 1 |
good | 7 | D4 | 1−2T+12T2−2pT3+p2T4 |
| 11 | C22 | 1+19T2+p2T4 |
| 13 | D4 | 1+4T+18T2+4pT3+p2T4 |
| 17 | D4 | 1+6T+40T2+6pT3+p2T4 |
| 19 | D4 | 1+2T+27T2+2pT3+p2T4 |
| 23 | C22 | 1+34T2+p2T4 |
| 29 | D4 | 1−12T+91T2−12pT3+p2T4 |
| 31 | D4 | 1+2T+15T2+2pT3+p2T4 |
| 37 | D4 | 1−2T+48T2−2pT3+p2T4 |
| 41 | D4 | 1−12T+91T2−12pT3+p2T4 |
| 43 | D4 | 1+10T+108T2+10pT3+p2T4 |
| 47 | D4 | 1+6T+100T2+6pT3+p2T4 |
| 53 | D4 | 1+18T+184T2+18pT3+p2T4 |
| 59 | D4 | 1−12T+151T2−12pT3+p2T4 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | D4 | 1−8T+42T2−8pT3+p2T4 |
| 71 | D4 | 1−12T+151T2−12pT3+p2T4 |
| 73 | D4 | 1+10T+144T2+10pT3+p2T4 |
| 79 | D4 | 1+8T+66T2+8pT3+p2T4 |
| 83 | D4 | 1+6T+28T2+6pT3+p2T4 |
| 89 | C22 | 1+151T2+p2T4 |
| 97 | D4 | 1−2T+192T2−2pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.52823112670035452477514657938, −7.51284282937636357077512343951, −6.83311705257973475996541678650, −6.61797779700303150396046229557, −6.30170526659815313556525023665, −6.17407753021035478280464558705, −5.34575602940067639386150980585, −5.17677881684802930378837505420, −4.72091041102345550663197415681, −4.61434920652647565414799601207, −4.26832180120372390562998740704, −3.72626857043563210723674310832, −3.29510237553682378587951643323, −2.67166675170214527963382748820, −2.49163737578087806360969116730, −2.14842252761752349386239190740, −1.31218399016290879851262057647, −1.28578020329537963669087552742, 0, 0,
1.28578020329537963669087552742, 1.31218399016290879851262057647, 2.14842252761752349386239190740, 2.49163737578087806360969116730, 2.67166675170214527963382748820, 3.29510237553682378587951643323, 3.72626857043563210723674310832, 4.26832180120372390562998740704, 4.61434920652647565414799601207, 4.72091041102345550663197415681, 5.17677881684802930378837505420, 5.34575602940067639386150980585, 6.17407753021035478280464558705, 6.30170526659815313556525023665, 6.61797779700303150396046229557, 6.83311705257973475996541678650, 7.51284282937636357077512343951, 7.52823112670035452477514657938