Properties

Label 4-90e4-1.1-c1e2-0-15
Degree $4$
Conductor $65610000$
Sign $1$
Analytic cond. $4183.35$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 4·13-s − 6·17-s − 2·19-s + 12·29-s − 2·31-s + 2·37-s + 12·41-s − 10·43-s − 6·47-s − 8·49-s − 18·53-s + 12·59-s − 8·61-s + 8·67-s + 12·71-s − 10·73-s − 8·79-s − 6·83-s − 8·91-s + 2·97-s + 12·101-s − 16·103-s − 2·109-s − 18·113-s − 12·119-s − 19·121-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.10·13-s − 1.45·17-s − 0.458·19-s + 2.22·29-s − 0.359·31-s + 0.328·37-s + 1.87·41-s − 1.52·43-s − 0.875·47-s − 8/7·49-s − 2.47·53-s + 1.56·59-s − 1.02·61-s + 0.977·67-s + 1.42·71-s − 1.17·73-s − 0.900·79-s − 0.658·83-s − 0.838·91-s + 0.203·97-s + 1.19·101-s − 1.57·103-s − 0.191·109-s − 1.69·113-s − 1.10·119-s − 1.72·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65610000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65610000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(65610000\)    =    \(2^{4} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(4183.35\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 65610000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$D_{4}$ \( 1 - 2 T + 12 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 18 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 6 T + 40 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 2 T + 27 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 2 T + 48 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 12 T + 91 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 10 T + 108 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 6 T + 100 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 18 T + 184 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 12 T + 151 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
67$D_{4}$ \( 1 - 8 T + 42 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 12 T + 151 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 10 T + 144 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 8 T + 66 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 2 T + 192 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52823112670035452477514657938, −7.51284282937636357077512343951, −6.83311705257973475996541678650, −6.61797779700303150396046229557, −6.30170526659815313556525023665, −6.17407753021035478280464558705, −5.34575602940067639386150980585, −5.17677881684802930378837505420, −4.72091041102345550663197415681, −4.61434920652647565414799601207, −4.26832180120372390562998740704, −3.72626857043563210723674310832, −3.29510237553682378587951643323, −2.67166675170214527963382748820, −2.49163737578087806360969116730, −2.14842252761752349386239190740, −1.31218399016290879851262057647, −1.28578020329537963669087552742, 0, 0, 1.28578020329537963669087552742, 1.31218399016290879851262057647, 2.14842252761752349386239190740, 2.49163737578087806360969116730, 2.67166675170214527963382748820, 3.29510237553682378587951643323, 3.72626857043563210723674310832, 4.26832180120372390562998740704, 4.61434920652647565414799601207, 4.72091041102345550663197415681, 5.17677881684802930378837505420, 5.34575602940067639386150980585, 6.17407753021035478280464558705, 6.30170526659815313556525023665, 6.61797779700303150396046229557, 6.83311705257973475996541678650, 7.51284282937636357077512343951, 7.52823112670035452477514657938

Graph of the $Z$-function along the critical line