L(s) = 1 | − 4.10·7-s − 3.81·11-s − 5.81·13-s − 3.81·17-s − 1.81·19-s − 2.10·23-s − 7.20·29-s − 1.81·31-s + 6.01·37-s + 11.0·41-s − 5.81·43-s − 11.9·47-s + 9.81·49-s − 4.20·53-s − 4.20·59-s − 3.01·61-s − 3.71·67-s − 2.01·71-s − 8·73-s + 15.6·77-s + 2·79-s + 3.89·83-s − 3·89-s + 23.8·91-s − 12.2·97-s + 16.2·101-s + 9.45·103-s + ⋯ |
L(s) = 1 | − 1.54·7-s − 1.15·11-s − 1.61·13-s − 0.925·17-s − 0.416·19-s − 0.438·23-s − 1.33·29-s − 0.326·31-s + 0.989·37-s + 1.72·41-s − 0.887·43-s − 1.73·47-s + 1.40·49-s − 0.577·53-s − 0.547·59-s − 0.386·61-s − 0.453·67-s − 0.239·71-s − 0.936·73-s + 1.78·77-s + 0.225·79-s + 0.427·83-s − 0.317·89-s + 2.50·91-s − 1.23·97-s + 1.61·101-s + 0.931·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1887888990\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1887888990\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 4.10T + 7T^{2} \) |
| 11 | \( 1 + 3.81T + 11T^{2} \) |
| 13 | \( 1 + 5.81T + 13T^{2} \) |
| 17 | \( 1 + 3.81T + 17T^{2} \) |
| 19 | \( 1 + 1.81T + 19T^{2} \) |
| 23 | \( 1 + 2.10T + 23T^{2} \) |
| 29 | \( 1 + 7.20T + 29T^{2} \) |
| 31 | \( 1 + 1.81T + 31T^{2} \) |
| 37 | \( 1 - 6.01T + 37T^{2} \) |
| 41 | \( 1 - 11.0T + 41T^{2} \) |
| 43 | \( 1 + 5.81T + 43T^{2} \) |
| 47 | \( 1 + 11.9T + 47T^{2} \) |
| 53 | \( 1 + 4.20T + 53T^{2} \) |
| 59 | \( 1 + 4.20T + 59T^{2} \) |
| 61 | \( 1 + 3.01T + 61T^{2} \) |
| 67 | \( 1 + 3.71T + 67T^{2} \) |
| 71 | \( 1 + 2.01T + 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 - 2T + 79T^{2} \) |
| 83 | \( 1 - 3.89T + 83T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.59163396859013139351573687701, −7.27518076343096678452646957801, −6.36716399091848402598484843248, −5.89799403469828195634222509534, −4.97868910800392133378351431990, −4.35483031251207301304768500099, −3.35306208856349440924275983707, −2.67903509578050500794232988747, −2.03512992508422161434338137557, −0.19477658658681718979900478197,
0.19477658658681718979900478197, 2.03512992508422161434338137557, 2.67903509578050500794232988747, 3.35306208856349440924275983707, 4.35483031251207301304768500099, 4.97868910800392133378351431990, 5.89799403469828195634222509534, 6.36716399091848402598484843248, 7.27518076343096678452646957801, 7.59163396859013139351573687701