Properties

Label 2-90e2-5.4-c1-0-49
Degree $2$
Conductor $8100$
Sign $0.447 + 0.894i$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73i·7-s + 5.52·11-s − 3.52i·13-s + 5.52i·17-s − 7.52·19-s + 0.734i·23-s + 4.46·29-s + 7.52·31-s − 6.05i·37-s − 1.05·41-s − 3.52i·43-s − 1.20i·47-s − 0.475·49-s + 1.46i·53-s + 1.46·59-s + ⋯
L(s)  = 1  − 1.03i·7-s + 1.66·11-s − 0.977i·13-s + 1.33i·17-s − 1.72·19-s + 0.153i·23-s + 0.829·29-s + 1.35·31-s − 0.995i·37-s − 0.164·41-s − 0.537i·43-s − 0.176i·47-s − 0.0679·49-s + 0.201i·53-s + 0.191·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{8100} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.162477998\)
\(L(\frac12)\) \(\approx\) \(2.162477998\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2.73iT - 7T^{2} \)
11 \( 1 - 5.52T + 11T^{2} \)
13 \( 1 + 3.52iT - 13T^{2} \)
17 \( 1 - 5.52iT - 17T^{2} \)
19 \( 1 + 7.52T + 19T^{2} \)
23 \( 1 - 0.734iT - 23T^{2} \)
29 \( 1 - 4.46T + 29T^{2} \)
31 \( 1 - 7.52T + 31T^{2} \)
37 \( 1 + 6.05iT - 37T^{2} \)
41 \( 1 + 1.05T + 41T^{2} \)
43 \( 1 + 3.52iT - 43T^{2} \)
47 \( 1 + 1.20iT - 47T^{2} \)
53 \( 1 - 1.46iT - 53T^{2} \)
59 \( 1 - 1.46T + 59T^{2} \)
61 \( 1 - 9.05T + 61T^{2} \)
67 \( 1 - 4.25iT - 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 8iT - 73T^{2} \)
79 \( 1 + 2T + 79T^{2} \)
83 \( 1 + 5.26iT - 83T^{2} \)
89 \( 1 - 3T + 89T^{2} \)
97 \( 1 + 9.46iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71846938587072898088666210859, −6.86646689863074812583858602575, −6.42429928554086625101462543932, −5.81342521912369508757466601001, −4.70388755121975295661790901512, −3.95720331573963157716933526896, −3.72345749310668525117654778830, −2.46725659572926371875930681708, −1.45740992899267213214022018005, −0.61470772624640970451984914452, 0.962445464219422230315436149234, 2.03458113690953743936420451630, 2.67502342939639790112821420728, 3.70939381246043385141419305477, 4.51589157652304843666698458567, 4.96872058824924822256739912496, 6.20662334964125835714839471762, 6.44526788585065236876352432819, 7.01066543584293462772871350064, 8.161690966690211410119475985558

Graph of the $Z$-function along the critical line