L(s) = 1 | − 2.73i·7-s + 5.52·11-s − 3.52i·13-s + 5.52i·17-s − 7.52·19-s + 0.734i·23-s + 4.46·29-s + 7.52·31-s − 6.05i·37-s − 1.05·41-s − 3.52i·43-s − 1.20i·47-s − 0.475·49-s + 1.46i·53-s + 1.46·59-s + ⋯ |
L(s) = 1 | − 1.03i·7-s + 1.66·11-s − 0.977i·13-s + 1.33i·17-s − 1.72·19-s + 0.153i·23-s + 0.829·29-s + 1.35·31-s − 0.995i·37-s − 0.164·41-s − 0.537i·43-s − 0.176i·47-s − 0.0679·49-s + 0.201i·53-s + 0.191·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.162477998\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.162477998\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 2.73iT - 7T^{2} \) |
| 11 | \( 1 - 5.52T + 11T^{2} \) |
| 13 | \( 1 + 3.52iT - 13T^{2} \) |
| 17 | \( 1 - 5.52iT - 17T^{2} \) |
| 19 | \( 1 + 7.52T + 19T^{2} \) |
| 23 | \( 1 - 0.734iT - 23T^{2} \) |
| 29 | \( 1 - 4.46T + 29T^{2} \) |
| 31 | \( 1 - 7.52T + 31T^{2} \) |
| 37 | \( 1 + 6.05iT - 37T^{2} \) |
| 41 | \( 1 + 1.05T + 41T^{2} \) |
| 43 | \( 1 + 3.52iT - 43T^{2} \) |
| 47 | \( 1 + 1.20iT - 47T^{2} \) |
| 53 | \( 1 - 1.46iT - 53T^{2} \) |
| 59 | \( 1 - 1.46T + 59T^{2} \) |
| 61 | \( 1 - 9.05T + 61T^{2} \) |
| 67 | \( 1 - 4.25iT - 67T^{2} \) |
| 71 | \( 1 - 10.0T + 71T^{2} \) |
| 73 | \( 1 - 8iT - 73T^{2} \) |
| 79 | \( 1 + 2T + 79T^{2} \) |
| 83 | \( 1 + 5.26iT - 83T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + 9.46iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.71846938587072898088666210859, −6.86646689863074812583858602575, −6.42429928554086625101462543932, −5.81342521912369508757466601001, −4.70388755121975295661790901512, −3.95720331573963157716933526896, −3.72345749310668525117654778830, −2.46725659572926371875930681708, −1.45740992899267213214022018005, −0.61470772624640970451984914452,
0.962445464219422230315436149234, 2.03458113690953743936420451630, 2.67502342939639790112821420728, 3.70939381246043385141419305477, 4.51589157652304843666698458567, 4.96872058824924822256739912496, 6.20662334964125835714839471762, 6.44526788585065236876352432819, 7.01066543584293462772871350064, 8.161690966690211410119475985558