L(s) = 1 | + 2·3-s + 3·9-s − 12·23-s + 2·25-s + 4·27-s + 12·29-s − 2·43-s − 11·49-s + 24·53-s + 2·61-s − 24·69-s + 4·75-s + 22·79-s + 5·81-s + 24·87-s + 36·101-s − 2·103-s + 12·107-s + 12·113-s − 10·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s − 22·147-s + 149-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s − 2.50·23-s + 2/5·25-s + 0.769·27-s + 2.22·29-s − 0.304·43-s − 1.57·49-s + 3.29·53-s + 0.256·61-s − 2.88·69-s + 0.461·75-s + 2.47·79-s + 5/9·81-s + 2.57·87-s + 3.58·101-s − 0.197·103-s + 1.16·107-s + 1.12·113-s − 0.909·121-s + 0.0887·127-s − 0.352·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.81·147-s + 0.0819·149-s + ⋯ |
Λ(s)=(=(65804544s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(65804544s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
65804544
= 28⋅32⋅134
|
Sign: |
1
|
Analytic conductor: |
4195.75 |
Root analytic conductor: |
8.04826 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 65804544, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
5.524496206 |
L(21) |
≈ |
5.524496206 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1−T)2 |
| 13 | | 1 |
good | 5 | C22 | 1−2T2+p2T4 |
| 7 | C22 | 1+11T2+p2T4 |
| 11 | C22 | 1+10T2+p2T4 |
| 17 | C2 | (1+pT2)2 |
| 19 | C22 | 1+26T2+p2T4 |
| 23 | C2 | (1+6T+pT2)2 |
| 29 | C2 | (1−6T+pT2)2 |
| 31 | C22 | 1+59T2+p2T4 |
| 37 | C2 | (1+pT2)2 |
| 41 | C22 | 1+34T2+p2T4 |
| 43 | C2 | (1+T+pT2)2 |
| 47 | C22 | 1+82T2+p2T4 |
| 53 | C2 | (1−12T+pT2)2 |
| 59 | C22 | 1+106T2+p2T4 |
| 61 | C2 | (1−T+pT2)2 |
| 67 | C22 | 1+59T2+p2T4 |
| 71 | C22 | 1+34T2+p2T4 |
| 73 | C22 | 1+143T2+p2T4 |
| 79 | C2 | (1−11T+pT2)2 |
| 83 | C22 | 1−26T2+p2T4 |
| 89 | C22 | 1+130T2+p2T4 |
| 97 | C22 | 1+167T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.914742258493993233136385732467, −7.78573258930618977651538713247, −7.48636729143301806935570681592, −6.91902854097483798828469619614, −6.67378145344098308048578793339, −6.35644948737587482518629829947, −6.01124298476723272419499876157, −5.61078665261345951603692006958, −5.08143603512056640526757292127, −4.79907325999365744746282630217, −4.29965369160807394585883922723, −4.15786349006164698609965746421, −3.48934529834465575486508023284, −3.45678724041477860448606587734, −2.85567185138923397641951261937, −2.43042029089779197788124239944, −2.00579167201248311567823960584, −1.82581884991847559444437499937, −0.931919197640142301796455455128, −0.58609583419050332989630214613,
0.58609583419050332989630214613, 0.931919197640142301796455455128, 1.82581884991847559444437499937, 2.00579167201248311567823960584, 2.43042029089779197788124239944, 2.85567185138923397641951261937, 3.45678724041477860448606587734, 3.48934529834465575486508023284, 4.15786349006164698609965746421, 4.29965369160807394585883922723, 4.79907325999365744746282630217, 5.08143603512056640526757292127, 5.61078665261345951603692006958, 6.01124298476723272419499876157, 6.35644948737587482518629829947, 6.67378145344098308048578793339, 6.91902854097483798828469619614, 7.48636729143301806935570681592, 7.78573258930618977651538713247, 7.914742258493993233136385732467