Properties

Label 4-8112e2-1.1-c1e2-0-5
Degree $4$
Conductor $65804544$
Sign $1$
Analytic cond. $4195.75$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s − 12·23-s + 2·25-s + 4·27-s + 12·29-s − 2·43-s − 11·49-s + 24·53-s + 2·61-s − 24·69-s + 4·75-s + 22·79-s + 5·81-s + 24·87-s + 36·101-s − 2·103-s + 12·107-s + 12·113-s − 10·121-s + 127-s − 4·129-s + 131-s + 137-s + 139-s − 22·147-s + 149-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s − 2.50·23-s + 2/5·25-s + 0.769·27-s + 2.22·29-s − 0.304·43-s − 1.57·49-s + 3.29·53-s + 0.256·61-s − 2.88·69-s + 0.461·75-s + 2.47·79-s + 5/9·81-s + 2.57·87-s + 3.58·101-s − 0.197·103-s + 1.16·107-s + 1.12·113-s − 0.909·121-s + 0.0887·127-s − 0.352·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.81·147-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65804544 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65804544 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(65804544\)    =    \(2^{8} \cdot 3^{2} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4195.75\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 65804544,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.524496206\)
\(L(\frac12)\) \(\approx\) \(5.524496206\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
13 \( 1 \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 106 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 143 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 167 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.914742258493993233136385732467, −7.78573258930618977651538713247, −7.48636729143301806935570681592, −6.91902854097483798828469619614, −6.67378145344098308048578793339, −6.35644948737587482518629829947, −6.01124298476723272419499876157, −5.61078665261345951603692006958, −5.08143603512056640526757292127, −4.79907325999365744746282630217, −4.29965369160807394585883922723, −4.15786349006164698609965746421, −3.48934529834465575486508023284, −3.45678724041477860448606587734, −2.85567185138923397641951261937, −2.43042029089779197788124239944, −2.00579167201248311567823960584, −1.82581884991847559444437499937, −0.931919197640142301796455455128, −0.58609583419050332989630214613, 0.58609583419050332989630214613, 0.931919197640142301796455455128, 1.82581884991847559444437499937, 2.00579167201248311567823960584, 2.43042029089779197788124239944, 2.85567185138923397641951261937, 3.45678724041477860448606587734, 3.48934529834465575486508023284, 4.15786349006164698609965746421, 4.29965369160807394585883922723, 4.79907325999365744746282630217, 5.08143603512056640526757292127, 5.61078665261345951603692006958, 6.01124298476723272419499876157, 6.35644948737587482518629829947, 6.67378145344098308048578793339, 6.91902854097483798828469619614, 7.48636729143301806935570681592, 7.78573258930618977651538713247, 7.914742258493993233136385732467

Graph of the $Z$-function along the critical line