Properties

Label 2-8112-1.1-c1-0-65
Degree $2$
Conductor $8112$
Sign $1$
Analytic cond. $64.7746$
Root an. cond. $8.04826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3.46·5-s − 1.73·7-s + 9-s + 3.46·11-s + 3.46·15-s − 3.46·19-s − 1.73·21-s − 6·23-s + 6.99·25-s + 27-s + 6·29-s − 1.73·31-s + 3.46·33-s − 5.99·35-s + 6.92·41-s − 43-s + 3.46·45-s + 3.46·47-s − 4·49-s + 12·53-s + 11.9·55-s − 3.46·57-s − 3.46·59-s + 61-s − 1.73·63-s + 8.66·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.54·5-s − 0.654·7-s + 0.333·9-s + 1.04·11-s + 0.894·15-s − 0.794·19-s − 0.377·21-s − 1.25·23-s + 1.39·25-s + 0.192·27-s + 1.11·29-s − 0.311·31-s + 0.603·33-s − 1.01·35-s + 1.08·41-s − 0.152·43-s + 0.516·45-s + 0.505·47-s − 0.571·49-s + 1.64·53-s + 1.61·55-s − 0.458·57-s − 0.450·59-s + 0.128·61-s − 0.218·63-s + 1.05·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8112\)    =    \(2^{4} \cdot 3 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(64.7746\)
Root analytic conductor: \(8.04826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8112,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.601230636\)
\(L(\frac12)\) \(\approx\) \(3.601230636\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
good5 \( 1 - 3.46T + 5T^{2} \)
7 \( 1 + 1.73T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 + 3.46T + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 1.73T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 + T + 43T^{2} \)
47 \( 1 - 3.46T + 47T^{2} \)
53 \( 1 - 12T + 53T^{2} \)
59 \( 1 + 3.46T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 - 8.66T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 + 1.73T + 73T^{2} \)
79 \( 1 - 11T + 79T^{2} \)
83 \( 1 - 13.8T + 83T^{2} \)
89 \( 1 - 6.92T + 89T^{2} \)
97 \( 1 + 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.914742258493993233136385732467, −6.91902854097483798828469619614, −6.35644948737587482518629829947, −6.01124298476723272419499876157, −5.08143603512056640526757292127, −4.15786349006164698609965746421, −3.48934529834465575486508023284, −2.43042029089779197788124239944, −2.00579167201248311567823960584, −0.931919197640142301796455455128, 0.931919197640142301796455455128, 2.00579167201248311567823960584, 2.43042029089779197788124239944, 3.48934529834465575486508023284, 4.15786349006164698609965746421, 5.08143603512056640526757292127, 6.01124298476723272419499876157, 6.35644948737587482518629829947, 6.91902854097483798828469619614, 7.914742258493993233136385732467

Graph of the $Z$-function along the critical line