L(s) = 1 | − 3·3-s − 6·7-s + 6·9-s − 7·11-s + 3·17-s − 13·19-s + 18·21-s + 14·23-s − 8·25-s − 10·27-s + 10·29-s − 6·31-s + 21·33-s + 6·37-s + 13·41-s + 5·43-s − 7·47-s + 10·49-s − 9·51-s − 3·53-s + 39·57-s + 6·59-s − 61-s − 36·63-s − 33·67-s − 42·69-s + 6·71-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 2.26·7-s + 2·9-s − 2.11·11-s + 0.727·17-s − 2.98·19-s + 3.92·21-s + 2.91·23-s − 8/5·25-s − 1.92·27-s + 1.85·29-s − 1.07·31-s + 3.65·33-s + 0.986·37-s + 2.03·41-s + 0.762·43-s − 1.02·47-s + 10/7·49-s − 1.26·51-s − 0.412·53-s + 5.16·57-s + 0.781·59-s − 0.128·61-s − 4.53·63-s − 4.03·67-s − 5.05·69-s + 0.712·71-s + ⋯ |
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((212⋅33⋅136)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅33⋅136
|
Sign: |
−1
|
Analytic conductor: |
271778. |
Root analytic conductor: |
8.04826 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 212⋅33⋅136, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)3 |
| 13 | | 1 |
good | 5 | A4×C2 | 1+8T2+7T3+8pT4+p3T6 |
| 7 | A4×C2 | 1+6T+26T2+85T3+26pT4+6p2T5+p3T6 |
| 11 | A4×C2 | 1+7T+47T2+161T3+47pT4+7p2T5+p3T6 |
| 17 | A4×C2 | 1−3T+47T2−103T3+47pT4−3p2T5+p3T6 |
| 19 | A4×C2 | 1+13T+97T2+481T3+97pT4+13p2T5+p3T6 |
| 23 | A4×C2 | 1−14T+118T2−651T3+118pT4−14p2T5+p3T6 |
| 29 | A4×C2 | 1−10T+90T2−567T3+90pT4−10p2T5+p3T6 |
| 31 | A4×C2 | 1+6T+56T2+191T3+56pT4+6p2T5+p3T6 |
| 37 | A4×C2 | 1−6T+2pT2−445T3+2p2T4−6p2T5+p3T6 |
| 41 | A4×C2 | 1−13T+149T2−983T3+149pT4−13p2T5+p3T6 |
| 43 | A4×C2 | 1−5T+100T2−389T3+100pT4−5p2T5+p3T6 |
| 47 | A4×C2 | 1+7T+85T2+357T3+85pT4+7p2T5+p3T6 |
| 53 | A4×C2 | 1+3T+15T2−325T3+15pT4+3p2T5+p3T6 |
| 59 | A4×C2 | 1−6T−7T2+404T3−7pT4−6p2T5+p3T6 |
| 61 | A4×C2 | 1+T+111T2+163T3+111pT4+p2T5+p3T6 |
| 67 | A4×C2 | 1+33T+557T2+5669T3+557pT4+33p2T5+p3T6 |
| 71 | A4×C2 | 1−6T+162T2−13pT3+162pT4−6p2T5+p3T6 |
| 73 | A4×C2 | 1−14T+212T2−1953T3+212pT4−14p2T5+p3T6 |
| 79 | A4×C2 | 1−11T+261T2−1751T3+261pT4−11p2T5+p3T6 |
| 83 | A4×C2 | 1+8T+100T2+1299T3+100pT4+8p2T5+p3T6 |
| 89 | A4×C2 | 1+7T+141T2+273T3+141pT4+7p2T5+p3T6 |
| 97 | A4×C2 | 1−19T+346T2−3715T3+346pT4−19p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.37022011004766787251642949141, −6.71981194587918788290424786158, −6.66975396196763504237313383110, −6.59077038303723228623100234776, −6.31025218374087677389105812764, −6.12844539490820135952952803904, −6.02188160081052329649926915263, −5.51250952524918086137506144380, −5.42934869667619169002760799221, −5.39023774707767006831233026496, −4.80648460225367436928455319423, −4.79308798146421432793064241491, −4.57118795956099656753855827238, −4.00674054661538619436325918595, −3.98038570135656662648328815725, −3.92167384996497426746763322221, −3.11019345331780987540545319888, −3.05080134041651731827755956288, −2.98094012196096485790552932787, −2.55131771279509385537543670759, −2.23632890725472614767458600096, −2.12191129076108914383486919264, −1.28705818829591757926300790777, −1.20508496717562071007319007153, −0.72925221299194677698636624754, 0, 0, 0,
0.72925221299194677698636624754, 1.20508496717562071007319007153, 1.28705818829591757926300790777, 2.12191129076108914383486919264, 2.23632890725472614767458600096, 2.55131771279509385537543670759, 2.98094012196096485790552932787, 3.05080134041651731827755956288, 3.11019345331780987540545319888, 3.92167384996497426746763322221, 3.98038570135656662648328815725, 4.00674054661538619436325918595, 4.57118795956099656753855827238, 4.79308798146421432793064241491, 4.80648460225367436928455319423, 5.39023774707767006831233026496, 5.42934869667619169002760799221, 5.51250952524918086137506144380, 6.02188160081052329649926915263, 6.12844539490820135952952803904, 6.31025218374087677389105812764, 6.59077038303723228623100234776, 6.66975396196763504237313383110, 6.71981194587918788290424786158, 7.37022011004766787251642949141