Properties

Label 2-819-7.4-c1-0-21
Degree 22
Conductor 819819
Sign 0.6050.795i-0.605 - 0.795i
Analytic cond. 6.539746.53974
Root an. cond. 2.557292.55729
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.30 − 2.26i)2-s + (−2.42 + 4.20i)4-s + (1.11 + 1.93i)5-s + (−2 + 1.73i)7-s + 7.47·8-s + (2.92 − 5.06i)10-s + (−1.5 + 2.59i)11-s − 13-s + (6.54 + 2.26i)14-s + (−4.92 − 8.53i)16-s + (0.736 − 1.27i)17-s + (−1.5 − 2.59i)19-s − 10.8·20-s + 7.85·22-s + (−4.11 − 7.13i)23-s + ⋯
L(s)  = 1  + (−0.925 − 1.60i)2-s + (−1.21 + 2.10i)4-s + (0.499 + 0.866i)5-s + (−0.755 + 0.654i)7-s + 2.64·8-s + (0.925 − 1.60i)10-s + (−0.452 + 0.783i)11-s − 0.277·13-s + (1.74 + 0.605i)14-s + (−1.23 − 2.13i)16-s + (0.178 − 0.309i)17-s + (−0.344 − 0.596i)19-s − 2.42·20-s + 1.67·22-s + (−0.858 − 1.48i)23-s + ⋯

Functional equation

Λ(s)=(819s/2ΓC(s)L(s)=((0.6050.795i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(819s/2ΓC(s+1/2)L(s)=((0.6050.795i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 819 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 819819    =    327133^{2} \cdot 7 \cdot 13
Sign: 0.6050.795i-0.605 - 0.795i
Analytic conductor: 6.539746.53974
Root analytic conductor: 2.557292.55729
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ819(235,)\chi_{819} (235, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 11
Selberg data: (2, 819, ( :1/2), 0.6050.795i)(2,\ 819,\ (\ :1/2),\ -0.605 - 0.795i)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(21.73i)T 1 + (2 - 1.73i)T
13 1+T 1 + T
good2 1+(1.30+2.26i)T+(1+1.73i)T2 1 + (1.30 + 2.26i)T + (-1 + 1.73i)T^{2}
5 1+(1.111.93i)T+(2.5+4.33i)T2 1 + (-1.11 - 1.93i)T + (-2.5 + 4.33i)T^{2}
11 1+(1.52.59i)T+(5.59.52i)T2 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2}
17 1+(0.736+1.27i)T+(8.514.7i)T2 1 + (-0.736 + 1.27i)T + (-8.5 - 14.7i)T^{2}
19 1+(1.5+2.59i)T+(9.5+16.4i)T2 1 + (1.5 + 2.59i)T + (-9.5 + 16.4i)T^{2}
23 1+(4.11+7.13i)T+(11.5+19.9i)T2 1 + (4.11 + 7.13i)T + (-11.5 + 19.9i)T^{2}
29 1+4.47T+29T2 1 + 4.47T + 29T^{2}
31 1+(2.54.33i)T+(15.526.8i)T2 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2}
37 1+(2.35+4.07i)T+(18.5+32.0i)T2 1 + (2.35 + 4.07i)T + (-18.5 + 32.0i)T^{2}
41 14.47T+41T2 1 - 4.47T + 41T^{2}
43 1+8T+43T2 1 + 8T + 43T^{2}
47 1+(3.73+6.47i)T+(23.5+40.7i)T2 1 + (3.73 + 6.47i)T + (-23.5 + 40.7i)T^{2}
53 1+(3.736.47i)T+(26.545.8i)T2 1 + (3.73 - 6.47i)T + (-26.5 - 45.8i)T^{2}
59 1+(0.7361.27i)T+(29.551.0i)T2 1 + (0.736 - 1.27i)T + (-29.5 - 51.0i)T^{2}
61 1+(1.5+2.59i)T+(30.5+52.8i)T2 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2}
67 1+(1.5+2.59i)T+(33.558.0i)T2 1 + (-1.5 + 2.59i)T + (-33.5 - 58.0i)T^{2}
71 18.94T+71T2 1 - 8.94T + 71T^{2}
73 1+(1.35+2.34i)T+(36.563.2i)T2 1 + (-1.35 + 2.34i)T + (-36.5 - 63.2i)T^{2}
79 1+(1.352.34i)T+(39.5+68.4i)T2 1 + (-1.35 - 2.34i)T + (-39.5 + 68.4i)T^{2}
83 1+83T2 1 + 83T^{2}
89 1+(1.111.93i)T+(44.5+77.0i)T2 1 + (-1.11 - 1.93i)T + (-44.5 + 77.0i)T^{2}
97 19.41T+97T2 1 - 9.41T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.876489472587370965440491531903, −9.213795769930802814763199912084, −8.379930000021349043469553804432, −7.29600919162277366229111860774, −6.38106465960017753553064942877, −4.92359572477605806208166223835, −3.61803831127645157847767493753, −2.60344181598290445483504774027, −2.10763991469750759528048455278, 0, 1.44753318114864922335316415897, 3.72307114132072439895375022139, 5.07413648051854586608028194205, 5.78329784947620868191492817450, 6.44397900283482383999943819474, 7.55980208973122466636735299024, 8.071750805877635202654697591420, 9.022596016919218622266460582322, 9.685189091288742995533559344134

Graph of the ZZ-function along the critical line