L(s) = 1 | + (−0.766 + 1.32i)2-s + (−0.173 − 0.300i)4-s + (−0.266 + 0.460i)5-s + (−0.418 − 2.61i)7-s − 2.53·8-s + (−0.407 − 0.705i)10-s + (−1.43 − 2.49i)11-s + 13-s + (3.78 + 1.44i)14-s + (2.28 − 3.96i)16-s + (1.67 + 2.89i)17-s + (1.03 − 1.78i)19-s + 0.184·20-s + 4.41·22-s + (3.93 − 6.81i)23-s + ⋯ |
L(s) = 1 | + (−0.541 + 0.938i)2-s + (−0.0868 − 0.150i)4-s + (−0.118 + 0.206i)5-s + (−0.158 − 0.987i)7-s − 0.895·8-s + (−0.128 − 0.223i)10-s + (−0.434 − 0.751i)11-s + 0.277·13-s + (1.01 + 0.386i)14-s + (0.571 − 0.990i)16-s + (0.405 + 0.703i)17-s + (0.236 − 0.410i)19-s + 0.0413·20-s + 0.940·22-s + (0.819 − 1.42i)23-s + ⋯ |
Λ(s)=(=(819s/2ΓC(s)L(s)(0.975−0.220i)Λ(2−s)
Λ(s)=(=(819s/2ΓC(s+1/2)L(s)(0.975−0.220i)Λ(1−s)
Degree: |
2 |
Conductor: |
819
= 32⋅7⋅13
|
Sign: |
0.975−0.220i
|
Analytic conductor: |
6.53974 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ819(352,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 819, ( :1/2), 0.975−0.220i)
|
Particular Values
L(1) |
≈ |
0.986960+0.110162i |
L(21) |
≈ |
0.986960+0.110162i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.418+2.61i)T |
| 13 | 1−T |
good | 2 | 1+(0.766−1.32i)T+(−1−1.73i)T2 |
| 5 | 1+(0.266−0.460i)T+(−2.5−4.33i)T2 |
| 11 | 1+(1.43+2.49i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−1.67−2.89i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.03+1.78i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−3.93+6.81i)T+(−11.5−19.9i)T2 |
| 29 | 1−7.04T+29T2 |
| 31 | 1+(3.11+5.39i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.326+0.565i)T+(−18.5−32.0i)T2 |
| 41 | 1−4.59T+41T2 |
| 43 | 1+6.10T+43T2 |
| 47 | 1+(−4.75+8.24i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.439−0.761i)T+(−26.5+45.8i)T2 |
| 59 | 1+(1.12+1.94i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.14+7.18i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.19−10.7i)T+(−33.5+58.0i)T2 |
| 71 | 1+10.6T+71T2 |
| 73 | 1+(−0.275−0.477i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−5.80+10.0i)T+(−39.5−68.4i)T2 |
| 83 | 1−5.87T+83T2 |
| 89 | 1+(−2.74+4.75i)T+(−44.5−77.0i)T2 |
| 97 | 1−12.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27392822332668768233157136515, −9.145446205975690924680151245337, −8.403036890930933737498287529830, −7.69429630837381503081032971521, −6.87886057288019245763374633907, −6.24919907504026180994108254633, −5.14362230866252066859423335310, −3.79348466323644940347311047065, −2.84645808086428443145064051981, −0.67070803828216033536479638577,
1.23433213916247244576929954729, 2.48886052745411542826786170203, 3.30152091762462332257994884821, 4.88267001575096858109643153482, 5.69974743546478878122359763878, 6.76055451100095370443383071154, 7.900573193725361109694129736915, 8.848909399605993751709541388924, 9.445053599299110631466046053416, 10.16946165200984479052039629130