L(s) = 1 | − 2·2-s − 4-s + 3·5-s + 4·7-s + 8·8-s − 6·10-s − 3·11-s − 2·13-s − 8·14-s − 7·16-s + 4·17-s + 19-s − 3·20-s + 6·22-s + 5·25-s + 4·26-s − 4·28-s + 7·29-s − 3·31-s − 14·32-s − 8·34-s + 12·35-s + 4·37-s − 2·38-s + 24·40-s + 3·41-s + 7·43-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1/2·4-s + 1.34·5-s + 1.51·7-s + 2.82·8-s − 1.89·10-s − 0.904·11-s − 0.554·13-s − 2.13·14-s − 7/4·16-s + 0.970·17-s + 0.229·19-s − 0.670·20-s + 1.27·22-s + 25-s + 0.784·26-s − 0.755·28-s + 1.29·29-s − 0.538·31-s − 2.47·32-s − 1.37·34-s + 2.02·35-s + 0.657·37-s − 0.324·38-s + 3.79·40-s + 0.468·41-s + 1.06·43-s + ⋯ |
Λ(s)=(=(670761s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(670761s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
670761
= 34⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
42.7683 |
Root analytic conductor: |
2.55729 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 670761, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.174917283 |
L(21) |
≈ |
1.174917283 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | | 1 |
| 7 | C2 | 1−4T+pT2 |
| 13 | C2 | 1+2T+pT2 |
good | 2 | C2 | (1+T+pT2)2 |
| 5 | C22 | 1−3T+4T2−3pT3+p2T4 |
| 11 | C22 | 1+3T−2T2+3pT3+p2T4 |
| 17 | C2 | (1−2T+pT2)2 |
| 19 | C2 | (1−8T+pT2)(1+7T+pT2) |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−7T+20T2−7pT3+p2T4 |
| 31 | C22 | 1+3T−22T2+3pT3+p2T4 |
| 37 | C2 | (1−2T+pT2)2 |
| 41 | C22 | 1−3T−32T2−3pT3+p2T4 |
| 43 | C22 | 1−7T+6T2−7pT3+p2T4 |
| 47 | C22 | 1−T−46T2−pT3+p2T4 |
| 53 | C22 | 1−3T−44T2−3pT3+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1−14T+pT2)(1+T+pT2) |
| 67 | C22 | 1−3T−58T2−3pT3+p2T4 |
| 71 | C22 | 1−13T+98T2−13pT3+p2T4 |
| 73 | C22 | 1−13T+96T2−13pT3+p2T4 |
| 79 | C22 | 1−3T−70T2−3pT3+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C2 | (1+6T+pT2)2 |
| 97 | C2 | (1−19T+pT2)(1+14T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19498515193657594743587468463, −9.939165597226645645218230901820, −9.561407804816850601755642414400, −9.343161768955426914645143453045, −8.746883799490829594903641028401, −8.300126757796985391135939740893, −8.044422464239794806373274107640, −7.85170734237166521008911248876, −7.10504011516982068271075081864, −6.94443125250656373439691471542, −5.79822073224444378540588248686, −5.58625417441522171535448808730, −4.99660545715066328729164023005, −4.90940484260439897130647317915, −4.23956269856436241918243244399, −3.62128743612012108477951849056, −2.43760343044770223921198018033, −2.18038063981077940198230753869, −1.23821931987795033679240901262, −0.835655756923601098163415042913,
0.835655756923601098163415042913, 1.23821931987795033679240901262, 2.18038063981077940198230753869, 2.43760343044770223921198018033, 3.62128743612012108477951849056, 4.23956269856436241918243244399, 4.90940484260439897130647317915, 4.99660545715066328729164023005, 5.58625417441522171535448808730, 5.79822073224444378540588248686, 6.94443125250656373439691471542, 7.10504011516982068271075081864, 7.85170734237166521008911248876, 8.044422464239794806373274107640, 8.300126757796985391135939740893, 8.746883799490829594903641028401, 9.343161768955426914645143453045, 9.561407804816850601755642414400, 9.939165597226645645218230901820, 10.19498515193657594743587468463