L(s) = 1 | + 3-s − 2·4-s − 7-s + 9-s − 11-s − 2·12-s − 13-s + 4·16-s − 6·17-s − 7·19-s − 21-s + 6·23-s + 27-s + 2·28-s − 6·29-s − 7·31-s − 33-s − 2·36-s + 2·37-s − 39-s − 6·41-s − 43-s + 2·44-s + 4·48-s − 6·49-s − 6·51-s + 2·52-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 4-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 0.577·12-s − 0.277·13-s + 16-s − 1.45·17-s − 1.60·19-s − 0.218·21-s + 1.25·23-s + 0.192·27-s + 0.377·28-s − 1.11·29-s − 1.25·31-s − 0.174·33-s − 1/3·36-s + 0.328·37-s − 0.160·39-s − 0.937·41-s − 0.152·43-s + 0.301·44-s + 0.577·48-s − 6/7·49-s − 0.840·51-s + 0.277·52-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 11 | 1+T |
good | 2 | 1+pT2 |
| 7 | 1+T+pT2 |
| 13 | 1+T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+7T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+7T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1+12T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−17T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.567309717603522064679693310635, −8.955732103392000591141257065944, −8.367781725670412632475845953636, −7.30708842123598942599324121736, −6.37594318082116078700438020966, −5.13071370263278861735871300481, −4.31466281424388077222299797352, −3.35971135428784856363070844882, −2.04859260711079521330868103173, 0,
2.04859260711079521330868103173, 3.35971135428784856363070844882, 4.31466281424388077222299797352, 5.13071370263278861735871300481, 6.37594318082116078700438020966, 7.30708842123598942599324121736, 8.367781725670412632475845953636, 8.955732103392000591141257065944, 9.567309717603522064679693310635