L(s) = 1 | + (2.06 − 1.49i)2-s + (0.309 + 0.951i)3-s + (1.39 − 4.28i)4-s + (2.06 + 1.49i)6-s + (1.44 − 4.45i)7-s + (−1.97 − 6.09i)8-s + (−0.809 + 0.587i)9-s + (−2.54 − 2.12i)11-s + 4.51·12-s + (−2.89 + 2.10i)13-s + (−3.69 − 11.3i)14-s + (−5.92 − 4.30i)16-s + (1.02 + 0.741i)17-s + (−0.788 + 2.42i)18-s + (2.18 + 6.71i)19-s + ⋯ |
L(s) = 1 | + (1.45 − 1.06i)2-s + (0.178 + 0.549i)3-s + (0.696 − 2.14i)4-s + (0.842 + 0.612i)6-s + (0.546 − 1.68i)7-s + (−0.699 − 2.15i)8-s + (−0.269 + 0.195i)9-s + (−0.767 − 0.641i)11-s + 1.30·12-s + (−0.802 + 0.583i)13-s + (−0.986 − 3.03i)14-s + (−1.48 − 1.07i)16-s + (0.247 + 0.179i)17-s + (−0.185 + 0.571i)18-s + (0.500 + 1.54i)19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.394+0.918i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(−0.394+0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.394+0.918i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(751,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), −0.394+0.918i)
|
Particular Values
L(1) |
≈ |
1.96711−2.98575i |
L(21) |
≈ |
1.96711−2.98575i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.309−0.951i)T |
| 5 | 1 |
| 11 | 1+(2.54+2.12i)T |
good | 2 | 1+(−2.06+1.49i)T+(0.618−1.90i)T2 |
| 7 | 1+(−1.44+4.45i)T+(−5.66−4.11i)T2 |
| 13 | 1+(2.89−2.10i)T+(4.01−12.3i)T2 |
| 17 | 1+(−1.02−0.741i)T+(5.25+16.1i)T2 |
| 19 | 1+(−2.18−6.71i)T+(−15.3+11.1i)T2 |
| 23 | 1−3.08T+23T2 |
| 29 | 1+(−1.91+5.89i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−0.0537+0.0390i)T+(9.57−29.4i)T2 |
| 37 | 1+(1.22−3.76i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−1.62−4.99i)T+(−33.1+24.0i)T2 |
| 43 | 1−9.77T+43T2 |
| 47 | 1+(−1.67−5.14i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−10.6+7.73i)T+(16.3−50.4i)T2 |
| 59 | 1+(0.163−0.504i)T+(−47.7−34.6i)T2 |
| 61 | 1+(4.96+3.60i)T+(18.8+58.0i)T2 |
| 67 | 1−3.10T+67T2 |
| 71 | 1+(6.73+4.89i)T+(21.9+67.5i)T2 |
| 73 | 1+(5.15−15.8i)T+(−59.0−42.9i)T2 |
| 79 | 1+(6.10−4.43i)T+(24.4−75.1i)T2 |
| 83 | 1+(−3.90−2.83i)T+(25.6+78.9i)T2 |
| 89 | 1+6.05T+89T2 |
| 97 | 1+(2.46−1.78i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19263148441652013579170267987, −9.795563582664646071608927322196, −8.166936941790772380694287532326, −7.30134431506059343314829401534, −6.02191989988917938816207639683, −5.09013800819168683785116099170, −4.30145580170787524558322527961, −3.68734174455607948897651815635, −2.61461284062223799337413220518, −1.18172891194111928982139578493,
2.44923188731380357378814177831, 2.92833375736992886444108879329, 4.65624627767906692533883878429, 5.30243425989170602074767360989, 5.81439811280273294111660844220, 7.17110806295462215082306810796, 7.42711857848070311709757064866, 8.537507550940299132562811703560, 9.207249036333172858807331846070, 10.78948724293300551954534589049