L(s) = 1 | + (2.06 − 1.49i)2-s + (0.309 + 0.951i)3-s + (1.39 − 4.28i)4-s + (2.06 + 1.49i)6-s + (1.44 − 4.45i)7-s + (−1.97 − 6.09i)8-s + (−0.809 + 0.587i)9-s + (−2.54 − 2.12i)11-s + 4.51·12-s + (−2.89 + 2.10i)13-s + (−3.69 − 11.3i)14-s + (−5.92 − 4.30i)16-s + (1.02 + 0.741i)17-s + (−0.788 + 2.42i)18-s + (2.18 + 6.71i)19-s + ⋯ |
L(s) = 1 | + (1.45 − 1.06i)2-s + (0.178 + 0.549i)3-s + (0.696 − 2.14i)4-s + (0.842 + 0.612i)6-s + (0.546 − 1.68i)7-s + (−0.699 − 2.15i)8-s + (−0.269 + 0.195i)9-s + (−0.767 − 0.641i)11-s + 1.30·12-s + (−0.802 + 0.583i)13-s + (−0.986 − 3.03i)14-s + (−1.48 − 1.07i)16-s + (0.247 + 0.179i)17-s + (−0.185 + 0.571i)18-s + (0.500 + 1.54i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.394 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.96711 - 2.98575i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.96711 - 2.98575i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (2.54 + 2.12i)T \) |
good | 2 | \( 1 + (-2.06 + 1.49i)T + (0.618 - 1.90i)T^{2} \) |
| 7 | \( 1 + (-1.44 + 4.45i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.89 - 2.10i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.02 - 0.741i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.18 - 6.71i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 3.08T + 23T^{2} \) |
| 29 | \( 1 + (-1.91 + 5.89i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.0537 + 0.0390i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.22 - 3.76i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.62 - 4.99i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 9.77T + 43T^{2} \) |
| 47 | \( 1 + (-1.67 - 5.14i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-10.6 + 7.73i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.163 - 0.504i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (4.96 + 3.60i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.10T + 67T^{2} \) |
| 71 | \( 1 + (6.73 + 4.89i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (5.15 - 15.8i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (6.10 - 4.43i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.90 - 2.83i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 6.05T + 89T^{2} \) |
| 97 | \( 1 + (2.46 - 1.78i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19263148441652013579170267987, −9.795563582664646071608927322196, −8.166936941790772380694287532326, −7.30134431506059343314829401534, −6.02191989988917938816207639683, −5.09013800819168683785116099170, −4.30145580170787524558322527961, −3.68734174455607948897651815635, −2.61461284062223799337413220518, −1.18172891194111928982139578493,
2.44923188731380357378814177831, 2.92833375736992886444108879329, 4.65624627767906692533883878429, 5.30243425989170602074767360989, 5.81439811280273294111660844220, 7.17110806295462215082306810796, 7.42711857848070311709757064866, 8.537507550940299132562811703560, 9.207249036333172858807331846070, 10.78948724293300551954534589049