L(s) = 1 | + (1.54 + 1.12i)2-s + (0.309 − 0.951i)3-s + (0.506 + 1.55i)4-s + (1.54 − 1.12i)6-s + (−1.37 − 4.23i)7-s + (0.213 − 0.656i)8-s + (−0.809 − 0.587i)9-s + (−1.22 + 3.08i)11-s + 1.63·12-s + (−0.432 − 0.313i)13-s + (2.62 − 8.08i)14-s + (3.71 − 2.69i)16-s + (3.67 − 2.67i)17-s + (−0.589 − 1.81i)18-s + (0.594 − 1.83i)19-s + ⋯ |
L(s) = 1 | + (1.09 + 0.792i)2-s + (0.178 − 0.549i)3-s + (0.253 + 0.779i)4-s + (0.629 − 0.457i)6-s + (−0.520 − 1.60i)7-s + (0.0753 − 0.231i)8-s + (−0.269 − 0.195i)9-s + (−0.368 + 0.929i)11-s + 0.472·12-s + (−0.119 − 0.0870i)13-s + (0.702 − 2.16i)14-s + (0.928 − 0.674i)16-s + (0.891 − 0.647i)17-s + (−0.138 − 0.427i)18-s + (0.136 − 0.419i)19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(0.785+0.619i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(0.785+0.619i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
0.785+0.619i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), 0.785+0.619i)
|
Particular Values
L(1) |
≈ |
2.48997−0.863364i |
L(21) |
≈ |
2.48997−0.863364i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.309+0.951i)T |
| 5 | 1 |
| 11 | 1+(1.22−3.08i)T |
good | 2 | 1+(−1.54−1.12i)T+(0.618+1.90i)T2 |
| 7 | 1+(1.37+4.23i)T+(−5.66+4.11i)T2 |
| 13 | 1+(0.432+0.313i)T+(4.01+12.3i)T2 |
| 17 | 1+(−3.67+2.67i)T+(5.25−16.1i)T2 |
| 19 | 1+(−0.594+1.83i)T+(−15.3−11.1i)T2 |
| 23 | 1−5.18T+23T2 |
| 29 | 1+(1.46+4.52i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.82+2.05i)T+(9.57+29.4i)T2 |
| 37 | 1+(−0.162−0.501i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−1.45+4.46i)T+(−33.1−24.0i)T2 |
| 43 | 1+3.02T+43T2 |
| 47 | 1+(3.70−11.4i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−4.06−2.95i)T+(16.3+50.4i)T2 |
| 59 | 1+(−4.21−12.9i)T+(−47.7+34.6i)T2 |
| 61 | 1+(9.45−6.87i)T+(18.8−58.0i)T2 |
| 67 | 1−11.5T+67T2 |
| 71 | 1+(2.72−1.97i)T+(21.9−67.5i)T2 |
| 73 | 1+(−0.200−0.618i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−14.3−10.4i)T+(24.4+75.1i)T2 |
| 83 | 1+(−3.43+2.49i)T+(25.6−78.9i)T2 |
| 89 | 1+8.24T+89T2 |
| 97 | 1+(−0.920−0.669i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05873521675124567247887110872, −9.424918037239332634385898802485, −7.81184605133814349977864536785, −7.27478513732231758686029221285, −6.85475307351203690383291792163, −5.75210786045235340721528589514, −4.76688158386599733774350994885, −3.94121324331542721503344808624, −2.89625105015649457369614234096, −0.938897240217945778556641165752,
2.00663805794076393969027779575, 3.17311405871891537273421801445, 3.50002210693355203565624548456, 5.11226707709350852371515094662, 5.42809893107952375028084168071, 6.39765905007425267409473008307, 8.060367526572713279284203215939, 8.711596110935513618584262962893, 9.588456614803247860761139674961, 10.54986245203523800555827580930