L(s) = 1 | + (−0.150 + 0.464i)2-s + (−0.809 + 0.587i)3-s + (1.42 + 1.03i)4-s + (−0.150 − 0.464i)6-s + (4.13 + 3.00i)7-s + (−1.48 + 1.07i)8-s + (0.309 − 0.951i)9-s + (2.66 − 1.97i)11-s − 1.76·12-s + (−0.561 + 1.72i)13-s + (−2.01 + 1.46i)14-s + (0.811 + 2.49i)16-s + (−0.197 − 0.608i)17-s + (0.395 + 0.287i)18-s + (3.55 − 2.58i)19-s + ⋯ |
L(s) = 1 | + (−0.106 + 0.328i)2-s + (−0.467 + 0.339i)3-s + (0.712 + 0.517i)4-s + (−0.0616 − 0.189i)6-s + (1.56 + 1.13i)7-s + (−0.525 + 0.381i)8-s + (0.103 − 0.317i)9-s + (0.804 − 0.594i)11-s − 0.508·12-s + (−0.155 + 0.479i)13-s + (−0.539 + 0.391i)14-s + (0.202 + 0.624i)16-s + (−0.0479 − 0.147i)17-s + (0.0931 + 0.0676i)18-s + (0.816 − 0.593i)19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(−0.0536−0.998i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(−0.0536−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
−0.0536−0.998i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(526,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), −0.0536−0.998i)
|
Particular Values
L(1) |
≈ |
1.25447+1.32370i |
L(21) |
≈ |
1.25447+1.32370i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.809−0.587i)T |
| 5 | 1 |
| 11 | 1+(−2.66+1.97i)T |
good | 2 | 1+(0.150−0.464i)T+(−1.61−1.17i)T2 |
| 7 | 1+(−4.13−3.00i)T+(2.16+6.65i)T2 |
| 13 | 1+(0.561−1.72i)T+(−10.5−7.64i)T2 |
| 17 | 1+(0.197+0.608i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−3.55+2.58i)T+(5.87−18.0i)T2 |
| 23 | 1−4.37T+23T2 |
| 29 | 1+(6.11+4.44i)T+(8.96+27.5i)T2 |
| 31 | 1+(−0.681+2.09i)T+(−25.0−18.2i)T2 |
| 37 | 1+(4.83+3.51i)T+(11.4+35.1i)T2 |
| 41 | 1+(−1.80+1.31i)T+(12.6−38.9i)T2 |
| 43 | 1+3.38T+43T2 |
| 47 | 1+(−1.22+0.890i)T+(14.5−44.6i)T2 |
| 53 | 1+(2.83−8.72i)T+(−42.8−31.1i)T2 |
| 59 | 1+(4.34+3.15i)T+(18.2+56.1i)T2 |
| 61 | 1+(−2.24−6.91i)T+(−49.3+35.8i)T2 |
| 67 | 1+7.25T+67T2 |
| 71 | 1+(−1.70−5.23i)T+(−57.4+41.7i)T2 |
| 73 | 1+(5.77+4.19i)T+(22.5+69.4i)T2 |
| 79 | 1+(−0.588+1.81i)T+(−63.9−46.4i)T2 |
| 83 | 1+(0.0500+0.153i)T+(−67.1+48.7i)T2 |
| 89 | 1+1.19T+89T2 |
| 97 | 1+(−4.41+13.5i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79274333175780882050356594376, −9.233171684256154354338476381183, −8.843137491251926819155078801499, −7.84297993302844910360608796667, −7.06062347299629912122256315920, −5.96597736331411386995078717351, −5.32532189420997490060522123981, −4.23718079874961320851587882131, −2.87335349036795187618588466700, −1.66803558564197038692565353795,
1.15390620009759827987851334462, 1.77114962062176195418986647569, 3.48096610831853298440246496289, 4.77079027240403550377793086299, 5.48415791654095850597964164783, 6.76686077551023233781527911267, 7.28586556260057365985217744989, 8.093554419900376112514991683601, 9.375021931596445948551791851128, 10.34500874634034647964061340751