L(s) = 1 | + (0.392 + 1.20i)2-s + (−0.809 − 0.587i)3-s + (0.311 − 0.226i)4-s + (0.392 − 1.20i)6-s + (−0.390 + 0.284i)7-s + (2.45 + 1.78i)8-s + (0.309 + 0.951i)9-s + (−0.982 − 3.16i)11-s − 0.384·12-s + (0.971 + 2.99i)13-s + (−0.496 − 0.361i)14-s + (−0.952 + 2.93i)16-s + (−0.775 + 2.38i)17-s + (−1.02 + 0.747i)18-s + (3.00 + 2.18i)19-s + ⋯ |
L(s) = 1 | + (0.277 + 0.854i)2-s + (−0.467 − 0.339i)3-s + (0.155 − 0.113i)4-s + (0.160 − 0.493i)6-s + (−0.147 + 0.107i)7-s + (0.866 + 0.629i)8-s + (0.103 + 0.317i)9-s + (−0.296 − 0.955i)11-s − 0.111·12-s + (0.269 + 0.829i)13-s + (−0.132 − 0.0964i)14-s + (−0.238 + 0.732i)16-s + (−0.188 + 0.578i)17-s + (−0.242 + 0.176i)18-s + (0.690 + 0.501i)19-s + ⋯ |
Λ(s)=(=(825s/2ΓC(s)L(s)(0.634−0.772i)Λ(2−s)
Λ(s)=(=(825s/2ΓC(s+1/2)L(s)(0.634−0.772i)Λ(1−s)
Degree: |
2 |
Conductor: |
825
= 3⋅52⋅11
|
Sign: |
0.634−0.772i
|
Analytic conductor: |
6.58765 |
Root analytic conductor: |
2.56664 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ825(676,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 825, ( :1/2), 0.634−0.772i)
|
Particular Values
L(1) |
≈ |
1.64796+0.779059i |
L(21) |
≈ |
1.64796+0.779059i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.809+0.587i)T |
| 5 | 1 |
| 11 | 1+(0.982+3.16i)T |
good | 2 | 1+(−0.392−1.20i)T+(−1.61+1.17i)T2 |
| 7 | 1+(0.390−0.284i)T+(2.16−6.65i)T2 |
| 13 | 1+(−0.971−2.99i)T+(−10.5+7.64i)T2 |
| 17 | 1+(0.775−2.38i)T+(−13.7−9.99i)T2 |
| 19 | 1+(−3.00−2.18i)T+(5.87+18.0i)T2 |
| 23 | 1−8.53T+23T2 |
| 29 | 1+(−8.07+5.86i)T+(8.96−27.5i)T2 |
| 31 | 1+(1.78+5.50i)T+(−25.0+18.2i)T2 |
| 37 | 1+(2.59−1.88i)T+(11.4−35.1i)T2 |
| 41 | 1+(−6.36−4.62i)T+(12.6+38.9i)T2 |
| 43 | 1+5.97T+43T2 |
| 47 | 1+(−4.96−3.60i)T+(14.5+44.6i)T2 |
| 53 | 1+(−0.488−1.50i)T+(−42.8+31.1i)T2 |
| 59 | 1+(−0.305+0.222i)T+(18.2−56.1i)T2 |
| 61 | 1+(−0.929+2.86i)T+(−49.3−35.8i)T2 |
| 67 | 1+5.98T+67T2 |
| 71 | 1+(−2.57+7.93i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−0.122+0.0889i)T+(22.5−69.4i)T2 |
| 79 | 1+(−2.31−7.11i)T+(−63.9+46.4i)T2 |
| 83 | 1+(−1.25+3.85i)T+(−67.1−48.7i)T2 |
| 89 | 1+17.0T+89T2 |
| 97 | 1+(1.11+3.43i)T+(−78.4+57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55584700088945633922537154584, −9.409866880232040943785886277427, −8.350921829980655596859205860686, −7.63933405316790799692913560234, −6.63444286825327119916771930781, −6.13105492262702106198892871570, −5.31028214019973325726287037660, −4.31383592529091578872082483655, −2.77941937835163091781031311239, −1.27141286439250328579353724594,
1.08955816111322313245081328138, 2.67149825737576848838643037653, 3.45223523544761934921617866136, 4.71368735898962627655235515505, 5.29846654781782780417272289231, 6.93809830552465897861289442143, 7.16958655340606026817340854501, 8.582799008407923556793125126682, 9.578404965181297101957988536632, 10.45081058651424266528133952312