L(s) = 1 | + (2.20 − 1.60i)2-s + (0.309 + 0.951i)3-s + (1.67 − 5.16i)4-s + (2.20 + 1.60i)6-s + (−0.150 + 0.462i)7-s + (−2.88 − 8.89i)8-s + (−0.809 + 0.587i)9-s + (3.06 + 1.26i)11-s + 5.43·12-s + (2.92 − 2.12i)13-s + (0.409 + 1.26i)14-s + (−11.8 − 8.59i)16-s + (−2.94 − 2.14i)17-s + (−0.842 + 2.59i)18-s + (−0.504 − 1.55i)19-s + ⋯ |
L(s) = 1 | + (1.55 − 1.13i)2-s + (0.178 + 0.549i)3-s + (0.839 − 2.58i)4-s + (0.900 + 0.654i)6-s + (−0.0568 + 0.174i)7-s + (−1.02 − 3.14i)8-s + (−0.269 + 0.195i)9-s + (0.924 + 0.381i)11-s + 1.56·12-s + (0.810 − 0.588i)13-s + (0.109 + 0.336i)14-s + (−2.95 − 2.14i)16-s + (−0.714 − 0.519i)17-s + (−0.198 + 0.611i)18-s + (−0.115 − 0.355i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.62885 - 2.90906i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.62885 - 2.90906i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-3.06 - 1.26i)T \) |
good | 2 | \( 1 + (-2.20 + 1.60i)T + (0.618 - 1.90i)T^{2} \) |
| 7 | \( 1 + (0.150 - 0.462i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.92 + 2.12i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.94 + 2.14i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (0.504 + 1.55i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 3.54T + 23T^{2} \) |
| 29 | \( 1 + (-0.326 + 1.00i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (4.93 - 3.58i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.65 - 8.17i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.39 - 10.4i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 7.41T + 43T^{2} \) |
| 47 | \( 1 + (1.61 + 4.95i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (1.20 - 0.875i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (2.46 - 7.58i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-8.78 - 6.38i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 0.432T + 67T^{2} \) |
| 71 | \( 1 + (4.86 + 3.53i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.359 + 1.10i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.57 + 2.60i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.57 - 1.86i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 1.38T + 89T^{2} \) |
| 97 | \( 1 + (1.13 - 0.822i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30066172168846589229082992854, −9.490627864998833629862411417318, −8.689736847133377902404262204743, −6.95443826901507375215120931241, −6.17105838881627345728777454064, −5.15178536324223104316330929477, −4.45096256549731660216401028039, −3.52587235889781025805282356891, −2.72436009367773811788371386498, −1.37098665775371471921761306976,
2.05710247869621753091971931670, 3.57046656757267854981545944903, 4.02258712109308850938013917379, 5.30456819679920883084413702343, 6.19507552133500140926860685554, 6.74745170596026342260478291099, 7.48871528209337333996828013425, 8.525598144341531885677626004844, 9.059181842571559348521869068435, 10.95360364675247013597436403690