Properties

Label 2-825-1.1-c3-0-77
Degree $2$
Conductor $825$
Sign $-1$
Analytic cond. $48.6765$
Root an. cond. $6.97686$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.368·2-s + 3·3-s − 7.86·4-s − 1.10·6-s + 26.5·7-s + 5.84·8-s + 9·9-s − 11·11-s − 23.5·12-s − 50.4·13-s − 9.79·14-s + 60.7·16-s − 108.·17-s − 3.31·18-s + 19.1·19-s + 79.7·21-s + 4.05·22-s − 60.4·23-s + 17.5·24-s + 18.5·26-s + 27·27-s − 209.·28-s − 39.2·29-s − 22.4·31-s − 69.1·32-s − 33·33-s + 40.1·34-s + ⋯
L(s)  = 1  − 0.130·2-s + 0.577·3-s − 0.983·4-s − 0.0752·6-s + 1.43·7-s + 0.258·8-s + 0.333·9-s − 0.301·11-s − 0.567·12-s − 1.07·13-s − 0.187·14-s + 0.949·16-s − 1.55·17-s − 0.0434·18-s + 0.230·19-s + 0.828·21-s + 0.0392·22-s − 0.547·23-s + 0.149·24-s + 0.140·26-s + 0.192·27-s − 1.41·28-s − 0.251·29-s − 0.130·31-s − 0.382·32-s − 0.174·33-s + 0.202·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(48.6765\)
Root analytic conductor: \(6.97686\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 825,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 + 0.368T + 8T^{2} \)
7 \( 1 - 26.5T + 343T^{2} \)
13 \( 1 + 50.4T + 2.19e3T^{2} \)
17 \( 1 + 108.T + 4.91e3T^{2} \)
19 \( 1 - 19.1T + 6.85e3T^{2} \)
23 \( 1 + 60.4T + 1.21e4T^{2} \)
29 \( 1 + 39.2T + 2.43e4T^{2} \)
31 \( 1 + 22.4T + 2.97e4T^{2} \)
37 \( 1 - 345.T + 5.06e4T^{2} \)
41 \( 1 + 96.3T + 6.89e4T^{2} \)
43 \( 1 + 335.T + 7.95e4T^{2} \)
47 \( 1 - 514.T + 1.03e5T^{2} \)
53 \( 1 + 131.T + 1.48e5T^{2} \)
59 \( 1 + 210.T + 2.05e5T^{2} \)
61 \( 1 + 68.9T + 2.26e5T^{2} \)
67 \( 1 + 202.T + 3.00e5T^{2} \)
71 \( 1 + 645.T + 3.57e5T^{2} \)
73 \( 1 + 1.02e3T + 3.89e5T^{2} \)
79 \( 1 - 321.T + 4.93e5T^{2} \)
83 \( 1 + 840.T + 5.71e5T^{2} \)
89 \( 1 + 1.44e3T + 7.04e5T^{2} \)
97 \( 1 + 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.286370759522316377060242557390, −8.540382561994947102004238401816, −7.914039854549605379083817281527, −7.15879862183014807671072531939, −5.63575530967098901895621248826, −4.65386476908546694586810803412, −4.23762079255732129452267719942, −2.65305002834628129910386032758, −1.55870166046766624206783098847, 0, 1.55870166046766624206783098847, 2.65305002834628129910386032758, 4.23762079255732129452267719942, 4.65386476908546694586810803412, 5.63575530967098901895621248826, 7.15879862183014807671072531939, 7.914039854549605379083817281527, 8.540382561994947102004238401816, 9.286370759522316377060242557390

Graph of the $Z$-function along the critical line