Properties

Label 2-825-1.1-c5-0-58
Degree $2$
Conductor $825$
Sign $1$
Analytic cond. $132.316$
Root an. cond. $11.5028$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.07·2-s − 9·3-s + 33.2·4-s − 72.7·6-s + 39.3·7-s + 10.2·8-s + 81·9-s + 121·11-s − 299.·12-s + 220.·13-s + 318.·14-s − 981.·16-s + 200.·17-s + 654.·18-s + 350.·19-s − 354.·21-s + 977.·22-s − 1.38e3·23-s − 91.9·24-s + 1.78e3·26-s − 729·27-s + 1.30e3·28-s + 5.50e3·29-s − 2.45e3·31-s − 8.25e3·32-s − 1.08e3·33-s + 1.61e3·34-s + ⋯
L(s)  = 1  + 1.42·2-s − 0.577·3-s + 1.03·4-s − 0.824·6-s + 0.303·7-s + 0.0564·8-s + 0.333·9-s + 0.301·11-s − 0.600·12-s + 0.362·13-s + 0.433·14-s − 0.958·16-s + 0.168·17-s + 0.476·18-s + 0.222·19-s − 0.175·21-s + 0.430·22-s − 0.545·23-s − 0.0325·24-s + 0.517·26-s − 0.192·27-s + 0.315·28-s + 1.21·29-s − 0.458·31-s − 1.42·32-s − 0.174·33-s + 0.240·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 825 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(825\)    =    \(3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(132.316\)
Root analytic conductor: \(11.5028\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 825,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.186492961\)
\(L(\frac12)\) \(\approx\) \(4.186492961\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
5 \( 1 \)
11 \( 1 - 121T \)
good2 \( 1 - 8.07T + 32T^{2} \)
7 \( 1 - 39.3T + 1.68e4T^{2} \)
13 \( 1 - 220.T + 3.71e5T^{2} \)
17 \( 1 - 200.T + 1.41e6T^{2} \)
19 \( 1 - 350.T + 2.47e6T^{2} \)
23 \( 1 + 1.38e3T + 6.43e6T^{2} \)
29 \( 1 - 5.50e3T + 2.05e7T^{2} \)
31 \( 1 + 2.45e3T + 2.86e7T^{2} \)
37 \( 1 - 4.06e3T + 6.93e7T^{2} \)
41 \( 1 - 527.T + 1.15e8T^{2} \)
43 \( 1 - 1.20e4T + 1.47e8T^{2} \)
47 \( 1 + 563.T + 2.29e8T^{2} \)
53 \( 1 - 3.72e4T + 4.18e8T^{2} \)
59 \( 1 - 2.15e3T + 7.14e8T^{2} \)
61 \( 1 + 3.99e4T + 8.44e8T^{2} \)
67 \( 1 - 3.84e4T + 1.35e9T^{2} \)
71 \( 1 + 1.37e4T + 1.80e9T^{2} \)
73 \( 1 - 3.97e4T + 2.07e9T^{2} \)
79 \( 1 - 3.56e4T + 3.07e9T^{2} \)
83 \( 1 - 7.99e4T + 3.93e9T^{2} \)
89 \( 1 + 3.77e4T + 5.58e9T^{2} \)
97 \( 1 - 7.61e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.593396194088515146350330895503, −8.580990740455532707459821914283, −7.45922811635295521071980971882, −6.46829463597262933770636335296, −5.85234625320562815312527535114, −4.97774192926619066629652996187, −4.23026222599976917878515372944, −3.33680405051253071304348989548, −2.13069831831111957379794882914, −0.77309700318192769304041189439, 0.77309700318192769304041189439, 2.13069831831111957379794882914, 3.33680405051253071304348989548, 4.23026222599976917878515372944, 4.97774192926619066629652996187, 5.85234625320562815312527535114, 6.46829463597262933770636335296, 7.45922811635295521071980971882, 8.580990740455532707459821914283, 9.593396194088515146350330895503

Graph of the $Z$-function along the critical line