L(s) = 1 | + 5-s + 4.73·7-s + 0.360·11-s + 5.26·13-s − 0.370·17-s − 4.60·19-s + 23-s + 25-s − 0.939·29-s + 9.66·31-s + 4.73·35-s + 3.26·37-s − 5.29·41-s + 1.25·47-s + 15.4·49-s − 10.9·53-s + 0.360·55-s + 9.66·59-s + 9.71·61-s + 5.26·65-s − 7.07·67-s − 11.3·71-s + 0.745·73-s + 1.70·77-s + 0.415·79-s + 9.26·83-s − 0.370·85-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.79·7-s + 0.108·11-s + 1.45·13-s − 0.0899·17-s − 1.05·19-s + 0.208·23-s + 0.200·25-s − 0.174·29-s + 1.73·31-s + 0.800·35-s + 0.537·37-s − 0.827·41-s + 0.183·47-s + 2.20·49-s − 1.50·53-s + 0.0486·55-s + 1.25·59-s + 1.24·61-s + 0.652·65-s − 0.863·67-s − 1.34·71-s + 0.0872·73-s + 0.194·77-s + 0.0467·79-s + 1.01·83-s − 0.0402·85-s + ⋯ |
Λ(s)=(=(8280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.343073600 |
L(21) |
≈ |
3.343073600 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 7 | 1−4.73T+7T2 |
| 11 | 1−0.360T+11T2 |
| 13 | 1−5.26T+13T2 |
| 17 | 1+0.370T+17T2 |
| 19 | 1+4.60T+19T2 |
| 29 | 1+0.939T+29T2 |
| 31 | 1−9.66T+31T2 |
| 37 | 1−3.26T+37T2 |
| 41 | 1+5.29T+41T2 |
| 43 | 1+43T2 |
| 47 | 1−1.25T+47T2 |
| 53 | 1+10.9T+53T2 |
| 59 | 1−9.66T+59T2 |
| 61 | 1−9.71T+61T2 |
| 67 | 1+7.07T+67T2 |
| 71 | 1+11.3T+71T2 |
| 73 | 1−0.745T+73T2 |
| 79 | 1−0.415T+79T2 |
| 83 | 1−9.26T+83T2 |
| 89 | 1+12.6T+89T2 |
| 97 | 1−14.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.025934477765864123626538632131, −7.12701054666033135049347327987, −6.30345242303854103628117809745, −5.81566870805209977326073590116, −4.87222448308005404242540730084, −4.45637650079522595400150967894, −3.58958670578191695976521264071, −2.46755196347086650262562836273, −1.68837990145725578811305610802, −0.990846893053214022973120212946,
0.990846893053214022973120212946, 1.68837990145725578811305610802, 2.46755196347086650262562836273, 3.58958670578191695976521264071, 4.45637650079522595400150967894, 4.87222448308005404242540730084, 5.81566870805209977326073590116, 6.30345242303854103628117809745, 7.12701054666033135049347327987, 8.025934477765864123626538632131