Properties

Label 2-8280-1.1-c1-0-55
Degree $2$
Conductor $8280$
Sign $1$
Analytic cond. $66.1161$
Root an. cond. $8.13118$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4.73·7-s + 0.360·11-s + 5.26·13-s − 0.370·17-s − 4.60·19-s + 23-s + 25-s − 0.939·29-s + 9.66·31-s + 4.73·35-s + 3.26·37-s − 5.29·41-s + 1.25·47-s + 15.4·49-s − 10.9·53-s + 0.360·55-s + 9.66·59-s + 9.71·61-s + 5.26·65-s − 7.07·67-s − 11.3·71-s + 0.745·73-s + 1.70·77-s + 0.415·79-s + 9.26·83-s − 0.370·85-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.79·7-s + 0.108·11-s + 1.45·13-s − 0.0899·17-s − 1.05·19-s + 0.208·23-s + 0.200·25-s − 0.174·29-s + 1.73·31-s + 0.800·35-s + 0.537·37-s − 0.827·41-s + 0.183·47-s + 2.20·49-s − 1.50·53-s + 0.0486·55-s + 1.25·59-s + 1.24·61-s + 0.652·65-s − 0.863·67-s − 1.34·71-s + 0.0872·73-s + 0.194·77-s + 0.0467·79-s + 1.01·83-s − 0.0402·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8280\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(66.1161\)
Root analytic conductor: \(8.13118\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.343073600\)
\(L(\frac12)\) \(\approx\) \(3.343073600\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good7 \( 1 - 4.73T + 7T^{2} \)
11 \( 1 - 0.360T + 11T^{2} \)
13 \( 1 - 5.26T + 13T^{2} \)
17 \( 1 + 0.370T + 17T^{2} \)
19 \( 1 + 4.60T + 19T^{2} \)
29 \( 1 + 0.939T + 29T^{2} \)
31 \( 1 - 9.66T + 31T^{2} \)
37 \( 1 - 3.26T + 37T^{2} \)
41 \( 1 + 5.29T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 - 1.25T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 9.66T + 59T^{2} \)
61 \( 1 - 9.71T + 61T^{2} \)
67 \( 1 + 7.07T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 - 0.745T + 73T^{2} \)
79 \( 1 - 0.415T + 79T^{2} \)
83 \( 1 - 9.26T + 83T^{2} \)
89 \( 1 + 12.6T + 89T^{2} \)
97 \( 1 - 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.025934477765864123626538632131, −7.12701054666033135049347327987, −6.30345242303854103628117809745, −5.81566870805209977326073590116, −4.87222448308005404242540730084, −4.45637650079522595400150967894, −3.58958670578191695976521264071, −2.46755196347086650262562836273, −1.68837990145725578811305610802, −0.990846893053214022973120212946, 0.990846893053214022973120212946, 1.68837990145725578811305610802, 2.46755196347086650262562836273, 3.58958670578191695976521264071, 4.45637650079522595400150967894, 4.87222448308005404242540730084, 5.81566870805209977326073590116, 6.30345242303854103628117809745, 7.12701054666033135049347327987, 8.025934477765864123626538632131

Graph of the $Z$-function along the critical line