Properties

Label 2-8280-1.1-c1-0-66
Degree $2$
Conductor $8280$
Sign $-1$
Analytic cond. $66.1161$
Root an. cond. $8.13118$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·11-s − 5·13-s + 4·17-s − 2·19-s + 23-s + 25-s + 3·29-s + 7·31-s − 2·37-s + 9·41-s − 4·43-s + 9·47-s − 7·49-s + 6·53-s + 2·55-s + 2·61-s + 5·65-s − 2·67-s + 71-s + 73-s − 14·79-s − 4·85-s − 16·89-s + 2·95-s − 4·97-s − 10·101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.603·11-s − 1.38·13-s + 0.970·17-s − 0.458·19-s + 0.208·23-s + 1/5·25-s + 0.557·29-s + 1.25·31-s − 0.328·37-s + 1.40·41-s − 0.609·43-s + 1.31·47-s − 49-s + 0.824·53-s + 0.269·55-s + 0.256·61-s + 0.620·65-s − 0.244·67-s + 0.118·71-s + 0.117·73-s − 1.57·79-s − 0.433·85-s − 1.69·89-s + 0.205·95-s − 0.406·97-s − 0.995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8280\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(66.1161\)
Root analytic conductor: \(8.13118\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 7 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44562594653426746837768678727, −6.96384478949261151934855166781, −6.04308041519196586441540983421, −5.29796325657690428899962089629, −4.67075715269829331721312412913, −3.97482952818300810701923022657, −2.91103419166611649736344659614, −2.46110585384113311166655930549, −1.14044450654319127021785432329, 0, 1.14044450654319127021785432329, 2.46110585384113311166655930549, 2.91103419166611649736344659614, 3.97482952818300810701923022657, 4.67075715269829331721312412913, 5.29796325657690428899962089629, 6.04308041519196586441540983421, 6.96384478949261151934855166781, 7.44562594653426746837768678727

Graph of the $Z$-function along the critical line