Properties

Label 4-91e4-1.1-c1e2-0-8
Degree $4$
Conductor $68574961$
Sign $1$
Analytic cond. $4372.39$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 4·4-s + 3·8-s − 9-s + 6·11-s + 3·16-s + 6·17-s − 3·18-s + 6·19-s + 18·22-s − 12·23-s − 5·25-s + 10·31-s + 6·32-s + 18·34-s − 4·36-s + 4·37-s + 18·38-s − 16·43-s + 24·44-s − 36·46-s − 6·47-s − 15·50-s − 6·53-s + 6·59-s − 6·61-s + 30·62-s + ⋯
L(s)  = 1  + 2.12·2-s + 2·4-s + 1.06·8-s − 1/3·9-s + 1.80·11-s + 3/4·16-s + 1.45·17-s − 0.707·18-s + 1.37·19-s + 3.83·22-s − 2.50·23-s − 25-s + 1.79·31-s + 1.06·32-s + 3.08·34-s − 2/3·36-s + 0.657·37-s + 2.91·38-s − 2.43·43-s + 3.61·44-s − 5.30·46-s − 0.875·47-s − 2.12·50-s − 0.824·53-s + 0.781·59-s − 0.768·61-s + 3.81·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68574961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68574961 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(68574961\)    =    \(7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4372.39\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 68574961,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(11.37816218\)
\(L(\frac12)\) \(\approx\) \(11.37816218\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2$C_2^2$ \( 1 - 3 T + 5 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
3$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$D_{4}$ \( 1 + 12 T + 77 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$D_{4}$ \( 1 - 4 T + 33 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
41$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$D_{4}$ \( 1 + 6 T + 83 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 6 T + 95 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 6 T + 107 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 8 T + 117 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 8 T + 129 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 173 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 30 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.982820559881118595989684120727, −7.73496349705862751558404028915, −7.03618598381248319923111028360, −6.69005494630249353699739735354, −6.41351457488829962799862626931, −6.20328545158585072117424451383, −5.65978229613637070655340511471, −5.62405833519709966136408854330, −5.12242155758843402766723540319, −4.89862679230168212830244837030, −4.21939438976793778270733002014, −4.17052913989804499796135433640, −3.83523993381332403445586364991, −3.44986878532506369747052712632, −3.00538890566313823792091989657, −2.94719526213056545435382393792, −2.01256227550936978261495537370, −1.66539717911064327220235980572, −1.24658112869423572569226566663, −0.54379000206957633115181158789, 0.54379000206957633115181158789, 1.24658112869423572569226566663, 1.66539717911064327220235980572, 2.01256227550936978261495537370, 2.94719526213056545435382393792, 3.00538890566313823792091989657, 3.44986878532506369747052712632, 3.83523993381332403445586364991, 4.17052913989804499796135433640, 4.21939438976793778270733002014, 4.89862679230168212830244837030, 5.12242155758843402766723540319, 5.62405833519709966136408854330, 5.65978229613637070655340511471, 6.20328545158585072117424451383, 6.41351457488829962799862626931, 6.69005494630249353699739735354, 7.03618598381248319923111028360, 7.73496349705862751558404028915, 7.982820559881118595989684120727

Graph of the $Z$-function along the critical line