L(s) = 1 | + 3·2-s + 4·4-s + 3·8-s − 9-s + 6·11-s + 3·16-s + 6·17-s − 3·18-s + 6·19-s + 18·22-s − 12·23-s − 5·25-s + 10·31-s + 6·32-s + 18·34-s − 4·36-s + 4·37-s + 18·38-s − 16·43-s + 24·44-s − 36·46-s − 6·47-s − 15·50-s − 6·53-s + 6·59-s − 6·61-s + 30·62-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 2·4-s + 1.06·8-s − 1/3·9-s + 1.80·11-s + 3/4·16-s + 1.45·17-s − 0.707·18-s + 1.37·19-s + 3.83·22-s − 2.50·23-s − 25-s + 1.79·31-s + 1.06·32-s + 3.08·34-s − 2/3·36-s + 0.657·37-s + 2.91·38-s − 2.43·43-s + 3.61·44-s − 5.30·46-s − 0.875·47-s − 2.12·50-s − 0.824·53-s + 0.781·59-s − 0.768·61-s + 3.81·62-s + ⋯ |
Λ(s)=(=(68574961s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(68574961s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
68574961
= 74⋅134
|
Sign: |
1
|
Analytic conductor: |
4372.39 |
Root analytic conductor: |
8.13167 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 68574961, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
11.37816218 |
L(21) |
≈ |
11.37816218 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 7 | | 1 |
| 13 | | 1 |
good | 2 | C22 | 1−3T+5T2−3pT3+p2T4 |
| 3 | C22 | 1+T2+p2T4 |
| 5 | C22 | 1+pT2+p2T4 |
| 11 | C2 | (1−3T+pT2)2 |
| 17 | D4 | 1−6T+23T2−6pT3+p2T4 |
| 19 | C2 | (1−3T+pT2)2 |
| 23 | D4 | 1+12T+77T2+12pT3+p2T4 |
| 29 | C22 | 1+38T2+p2T4 |
| 31 | C2 | (1−5T+pT2)2 |
| 37 | D4 | 1−4T+33T2−4pT3+p2T4 |
| 41 | C22 | 1+62T2+p2T4 |
| 43 | C2 | (1+8T+pT2)2 |
| 47 | D4 | 1+6T+83T2+6pT3+p2T4 |
| 53 | D4 | 1+6T+95T2+6pT3+p2T4 |
| 59 | D4 | 1−6T+107T2−6pT3+p2T4 |
| 61 | C2 | (1+3T+pT2)2 |
| 67 | C2 | (1−3T+pT2)2 |
| 71 | C22 | 1+62T2+p2T4 |
| 73 | D4 | 1−8T+117T2−8pT3+p2T4 |
| 79 | D4 | 1−8T+129T2−8pT3+p2T4 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+173T2+p2T4 |
| 97 | D4 | 1+8T+30T2+8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.982820559881118595989684120727, −7.73496349705862751558404028915, −7.03618598381248319923111028360, −6.69005494630249353699739735354, −6.41351457488829962799862626931, −6.20328545158585072117424451383, −5.65978229613637070655340511471, −5.62405833519709966136408854330, −5.12242155758843402766723540319, −4.89862679230168212830244837030, −4.21939438976793778270733002014, −4.17052913989804499796135433640, −3.83523993381332403445586364991, −3.44986878532506369747052712632, −3.00538890566313823792091989657, −2.94719526213056545435382393792, −2.01256227550936978261495537370, −1.66539717911064327220235980572, −1.24658112869423572569226566663, −0.54379000206957633115181158789,
0.54379000206957633115181158789, 1.24658112869423572569226566663, 1.66539717911064327220235980572, 2.01256227550936978261495537370, 2.94719526213056545435382393792, 3.00538890566313823792091989657, 3.44986878532506369747052712632, 3.83523993381332403445586364991, 4.17052913989804499796135433640, 4.21939438976793778270733002014, 4.89862679230168212830244837030, 5.12242155758843402766723540319, 5.62405833519709966136408854330, 5.65978229613637070655340511471, 6.20328545158585072117424451383, 6.41351457488829962799862626931, 6.69005494630249353699739735354, 7.03618598381248319923111028360, 7.73496349705862751558404028915, 7.982820559881118595989684120727