L(s) = 1 | + 0.195·2-s − 0.259·3-s − 1.96·4-s − 3.93·5-s − 0.0508·6-s − 0.775·8-s − 2.93·9-s − 0.769·10-s − 4.50·11-s + 0.509·12-s + 1.02·15-s + 3.77·16-s − 2.28·17-s − 0.573·18-s + 1.78·19-s + 7.71·20-s − 0.881·22-s + 1.74·23-s + 0.201·24-s + 10.4·25-s + 1.54·27-s + 1.65·29-s + 0.199·30-s − 5.60·31-s + 2.28·32-s + 1.17·33-s − 0.446·34-s + ⋯ |
L(s) = 1 | + 0.138·2-s − 0.149·3-s − 0.980·4-s − 1.75·5-s − 0.0207·6-s − 0.274·8-s − 0.977·9-s − 0.243·10-s − 1.35·11-s + 0.147·12-s + 0.263·15-s + 0.942·16-s − 0.553·17-s − 0.135·18-s + 0.410·19-s + 1.72·20-s − 0.187·22-s + 0.362·23-s + 0.0411·24-s + 2.09·25-s + 0.296·27-s + 0.306·29-s + 0.0364·30-s − 1.00·31-s + 0.404·32-s + 0.203·33-s − 0.0765·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1−0.195T+2T2 |
| 3 | 1+0.259T+3T2 |
| 5 | 1+3.93T+5T2 |
| 11 | 1+4.50T+11T2 |
| 17 | 1+2.28T+17T2 |
| 19 | 1−1.78T+19T2 |
| 23 | 1−1.74T+23T2 |
| 29 | 1−1.65T+29T2 |
| 31 | 1+5.60T+31T2 |
| 37 | 1+7.14T+37T2 |
| 41 | 1−8.11T+41T2 |
| 43 | 1−6.81T+43T2 |
| 47 | 1+3.54T+47T2 |
| 53 | 1−3.28T+53T2 |
| 59 | 1+4.50T+59T2 |
| 61 | 1−7.54T+61T2 |
| 67 | 1−12.6T+67T2 |
| 71 | 1+9.54T+71T2 |
| 73 | 1+1.08T+73T2 |
| 79 | 1−0.791T+79T2 |
| 83 | 1−7.14T+83T2 |
| 89 | 1−11.2T+89T2 |
| 97 | 1−8.81T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.69747725115047820594895357667, −6.96182672970872597115185077387, −5.86593503974774212690270397128, −5.17799661148868669093278056813, −4.71177483625010844389279259328, −3.86207666121627903671376796732, −3.30368040025380187539949936712, −2.51816864270507658915657682372, −0.71204636625999536028728804519, 0,
0.71204636625999536028728804519, 2.51816864270507658915657682372, 3.30368040025380187539949936712, 3.86207666121627903671376796732, 4.71177483625010844389279259328, 5.17799661148868669093278056813, 5.86593503974774212690270397128, 6.96182672970872597115185077387, 7.69747725115047820594895357667