L(s) = 1 | + 5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)45-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 − 0.866i)61-s + (0.5 − 0.866i)65-s − 73-s + (−0.499 + 0.866i)81-s + (0.5 + 0.866i)85-s + ⋯ |
L(s) = 1 | + 5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)45-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 − 0.866i)61-s + (0.5 − 0.866i)65-s − 73-s + (−0.499 + 0.866i)81-s + (0.5 + 0.866i)85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.128275941\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.128275941\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34171195898141600290752045253, −9.550728528784383610325028863174, −8.788857535467445963694871471797, −7.960781945023319979958792070121, −6.74967866018315926630608153952, −5.91080782726032255117256853856, −5.38848199087459744727417017856, −3.85995080406162316945946703601, −2.90170479363272988772809371389, −1.45409004826711199249013006458,
1.76348168960243201443293740352, 2.75780103292694502802947627830, 4.18896647589809392843679974444, 5.33245819744144399996348455539, 5.94004397471897637449001737152, 6.99063060318122291659412215519, 7.930126170105022775739781557862, 8.903547049163200532714424180878, 9.605921739771089939772348901243, 10.37266678450107325880979581293