L(s) = 1 | + 5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)45-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 − 0.866i)61-s + (0.5 − 0.866i)65-s − 73-s + (−0.499 + 0.866i)81-s + (0.5 + 0.866i)85-s + ⋯ |
L(s) = 1 | + 5-s + (−0.5 − 0.866i)9-s + (0.5 − 0.866i)13-s + (0.5 + 0.866i)17-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)37-s + (0.5 − 0.866i)41-s + (−0.5 − 0.866i)45-s + (−0.5 + 0.866i)49-s + 53-s + (−0.5 − 0.866i)61-s + (0.5 − 0.866i)65-s − 73-s + (−0.499 + 0.866i)81-s + (0.5 + 0.866i)85-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.964+0.265i)Λ(1−s)
Λ(s)=(=(832s/2ΓC(s)L(s)(0.964+0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.964+0.265i
|
Analytic conductor: |
0.415222 |
Root analytic conductor: |
0.644377 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :0), 0.964+0.265i)
|
Particular Values
L(21) |
≈ |
1.128275941 |
L(21) |
≈ |
1.128275941 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−0.5+0.866i)T |
good | 3 | 1+(0.5+0.866i)T2 |
| 5 | 1−T+T2 |
| 7 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1−T2 |
| 53 | 1−T+T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1+T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 97 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34171195898141600290752045253, −9.550728528784383610325028863174, −8.788857535467445963694871471797, −7.960781945023319979958792070121, −6.74967866018315926630608153952, −5.91080782726032255117256853856, −5.38848199087459744727417017856, −3.85995080406162316945946703601, −2.90170479363272988772809371389, −1.45409004826711199249013006458,
1.76348168960243201443293740352, 2.75780103292694502802947627830, 4.18896647589809392843679974444, 5.33245819744144399996348455539, 5.94004397471897637449001737152, 6.99063060318122291659412215519, 7.930126170105022775739781557862, 8.903547049163200532714424180878, 9.605921739771089939772348901243, 10.37266678450107325880979581293