L(s) = 1 | + 2.56·3-s − 0.561·5-s + 0.561·7-s + 3.56·9-s + 2·11-s + 13-s − 1.43·15-s − 0.561·17-s + 6·19-s + 1.43·21-s − 4.68·25-s + 1.43·27-s + 8.24·29-s − 7.12·31-s + 5.12·33-s − 0.315·35-s + 9.68·37-s + 2.56·39-s + 7.12·41-s − 8.80·43-s − 2.00·45-s − 1.68·47-s − 6.68·49-s − 1.43·51-s + 4.87·53-s − 1.12·55-s + 15.3·57-s + ⋯ |
L(s) = 1 | + 1.47·3-s − 0.251·5-s + 0.212·7-s + 1.18·9-s + 0.603·11-s + 0.277·13-s − 0.371·15-s − 0.136·17-s + 1.37·19-s + 0.313·21-s − 0.936·25-s + 0.276·27-s + 1.53·29-s − 1.27·31-s + 0.891·33-s − 0.0533·35-s + 1.59·37-s + 0.410·39-s + 1.11·41-s − 1.34·43-s − 0.298·45-s − 0.245·47-s − 0.954·49-s − 0.201·51-s + 0.669·53-s − 0.151·55-s + 2.03·57-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.611994895 |
L(21) |
≈ |
2.611994895 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−T |
good | 3 | 1−2.56T+3T2 |
| 5 | 1+0.561T+5T2 |
| 7 | 1−0.561T+7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1+0.561T+17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+23T2 |
| 29 | 1−8.24T+29T2 |
| 31 | 1+7.12T+31T2 |
| 37 | 1−9.68T+37T2 |
| 41 | 1−7.12T+41T2 |
| 43 | 1+8.80T+43T2 |
| 47 | 1+1.68T+47T2 |
| 53 | 1−4.87T+53T2 |
| 59 | 1+6T+59T2 |
| 61 | 1+13.3T+61T2 |
| 67 | 1−6T+67T2 |
| 71 | 1−1.68T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+17.3T+83T2 |
| 89 | 1+8.24T+89T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.806057451218276113604895515910, −9.381712764273865955572981583725, −8.450013455410768989159259017789, −7.85722718878998315629993807171, −7.06528923023124603922603022090, −5.88208074573168203198918741286, −4.54070247726807357277017577522, −3.62176695122971953067327633570, −2.77544523177250281345606381306, −1.47481550740806929509898867304,
1.47481550740806929509898867304, 2.77544523177250281345606381306, 3.62176695122971953067327633570, 4.54070247726807357277017577522, 5.88208074573168203198918741286, 7.06528923023124603922603022090, 7.85722718878998315629993807171, 8.450013455410768989159259017789, 9.381712764273865955572981583725, 9.806057451218276113604895515910