Properties

Label 2-832-1.1-c1-0-8
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s − 0.561·5-s + 0.561·7-s + 3.56·9-s + 2·11-s + 13-s − 1.43·15-s − 0.561·17-s + 6·19-s + 1.43·21-s − 4.68·25-s + 1.43·27-s + 8.24·29-s − 7.12·31-s + 5.12·33-s − 0.315·35-s + 9.68·37-s + 2.56·39-s + 7.12·41-s − 8.80·43-s − 2.00·45-s − 1.68·47-s − 6.68·49-s − 1.43·51-s + 4.87·53-s − 1.12·55-s + 15.3·57-s + ⋯
L(s)  = 1  + 1.47·3-s − 0.251·5-s + 0.212·7-s + 1.18·9-s + 0.603·11-s + 0.277·13-s − 0.371·15-s − 0.136·17-s + 1.37·19-s + 0.313·21-s − 0.936·25-s + 0.276·27-s + 1.53·29-s − 1.27·31-s + 0.891·33-s − 0.0533·35-s + 1.59·37-s + 0.410·39-s + 1.11·41-s − 1.34·43-s − 0.298·45-s − 0.245·47-s − 0.954·49-s − 0.201·51-s + 0.669·53-s − 0.151·55-s + 2.03·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.611994895\)
\(L(\frac12)\) \(\approx\) \(2.611994895\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 2.56T + 3T^{2} \)
5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 - 0.561T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 + 0.561T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 7.12T + 31T^{2} \)
37 \( 1 - 9.68T + 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 + 8.80T + 43T^{2} \)
47 \( 1 + 1.68T + 47T^{2} \)
53 \( 1 - 4.87T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 + 13.3T + 61T^{2} \)
67 \( 1 - 6T + 67T^{2} \)
71 \( 1 - 1.68T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 17.3T + 83T^{2} \)
89 \( 1 + 8.24T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.806057451218276113604895515910, −9.381712764273865955572981583725, −8.450013455410768989159259017789, −7.85722718878998315629993807171, −7.06528923023124603922603022090, −5.88208074573168203198918741286, −4.54070247726807357277017577522, −3.62176695122971953067327633570, −2.77544523177250281345606381306, −1.47481550740806929509898867304, 1.47481550740806929509898867304, 2.77544523177250281345606381306, 3.62176695122971953067327633570, 4.54070247726807357277017577522, 5.88208074573168203198918741286, 7.06528923023124603922603022090, 7.85722718878998315629993807171, 8.450013455410768989159259017789, 9.381712764273865955572981583725, 9.806057451218276113604895515910

Graph of the $Z$-function along the critical line