L(s) = 1 | + 2.56·3-s − 0.561·5-s + 0.561·7-s + 3.56·9-s + 2·11-s + 13-s − 1.43·15-s − 0.561·17-s + 6·19-s + 1.43·21-s − 4.68·25-s + 1.43·27-s + 8.24·29-s − 7.12·31-s + 5.12·33-s − 0.315·35-s + 9.68·37-s + 2.56·39-s + 7.12·41-s − 8.80·43-s − 2.00·45-s − 1.68·47-s − 6.68·49-s − 1.43·51-s + 4.87·53-s − 1.12·55-s + 15.3·57-s + ⋯ |
L(s) = 1 | + 1.47·3-s − 0.251·5-s + 0.212·7-s + 1.18·9-s + 0.603·11-s + 0.277·13-s − 0.371·15-s − 0.136·17-s + 1.37·19-s + 0.313·21-s − 0.936·25-s + 0.276·27-s + 1.53·29-s − 1.27·31-s + 0.891·33-s − 0.0533·35-s + 1.59·37-s + 0.410·39-s + 1.11·41-s − 1.34·43-s − 0.298·45-s − 0.245·47-s − 0.954·49-s − 0.201·51-s + 0.669·53-s − 0.151·55-s + 2.03·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.611994895\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.611994895\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 - 2.56T + 3T^{2} \) |
| 5 | \( 1 + 0.561T + 5T^{2} \) |
| 7 | \( 1 - 0.561T + 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 17 | \( 1 + 0.561T + 17T^{2} \) |
| 19 | \( 1 - 6T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 8.24T + 29T^{2} \) |
| 31 | \( 1 + 7.12T + 31T^{2} \) |
| 37 | \( 1 - 9.68T + 37T^{2} \) |
| 41 | \( 1 - 7.12T + 41T^{2} \) |
| 43 | \( 1 + 8.80T + 43T^{2} \) |
| 47 | \( 1 + 1.68T + 47T^{2} \) |
| 53 | \( 1 - 4.87T + 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 13.3T + 61T^{2} \) |
| 67 | \( 1 - 6T + 67T^{2} \) |
| 71 | \( 1 - 1.68T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + 12T + 79T^{2} \) |
| 83 | \( 1 + 17.3T + 83T^{2} \) |
| 89 | \( 1 + 8.24T + 89T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.806057451218276113604895515910, −9.381712764273865955572981583725, −8.450013455410768989159259017789, −7.85722718878998315629993807171, −7.06528923023124603922603022090, −5.88208074573168203198918741286, −4.54070247726807357277017577522, −3.62176695122971953067327633570, −2.77544523177250281345606381306, −1.47481550740806929509898867304,
1.47481550740806929509898867304, 2.77544523177250281345606381306, 3.62176695122971953067327633570, 4.54070247726807357277017577522, 5.88208074573168203198918741286, 7.06528923023124603922603022090, 7.85722718878998315629993807171, 8.450013455410768989159259017789, 9.381712764273865955572981583725, 9.806057451218276113604895515910