L(s) = 1 | + 3.11·3-s + 3.70·5-s − 4.20·7-s + 6.70·9-s − 1.09·11-s − 13-s + 11.5·15-s + 0.298·17-s + 1.09·19-s − 13.1·21-s + 8.70·25-s + 11.5·27-s + 2·29-s + 5.13·31-s − 3.40·33-s − 15.5·35-s + 3.70·37-s − 3.11·39-s − 9.40·41-s − 5.29·43-s + 24.8·45-s − 4.20·47-s + 10.7·49-s + 0.929·51-s − 1.40·53-s − 4.04·55-s + 3.40·57-s + ⋯ |
L(s) = 1 | + 1.79·3-s + 1.65·5-s − 1.59·7-s + 2.23·9-s − 0.329·11-s − 0.277·13-s + 2.97·15-s + 0.0723·17-s + 0.250·19-s − 2.85·21-s + 1.74·25-s + 2.21·27-s + 0.371·29-s + 0.922·31-s − 0.592·33-s − 2.63·35-s + 0.608·37-s − 0.498·39-s − 1.46·41-s − 0.808·43-s + 3.69·45-s − 0.613·47-s + 1.52·49-s + 0.130·51-s − 0.192·53-s − 0.545·55-s + 0.450·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.161716103\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.161716103\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - 3.11T + 3T^{2} \) |
| 5 | \( 1 - 3.70T + 5T^{2} \) |
| 7 | \( 1 + 4.20T + 7T^{2} \) |
| 11 | \( 1 + 1.09T + 11T^{2} \) |
| 17 | \( 1 - 0.298T + 17T^{2} \) |
| 19 | \( 1 - 1.09T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 - 5.13T + 31T^{2} \) |
| 37 | \( 1 - 3.70T + 37T^{2} \) |
| 41 | \( 1 + 9.40T + 41T^{2} \) |
| 43 | \( 1 + 5.29T + 43T^{2} \) |
| 47 | \( 1 + 4.20T + 47T^{2} \) |
| 53 | \( 1 + 1.40T + 53T^{2} \) |
| 59 | \( 1 + 13.5T + 59T^{2} \) |
| 61 | \( 1 + 9.40T + 61T^{2} \) |
| 67 | \( 1 + 11.3T + 67T^{2} \) |
| 71 | \( 1 + 8.25T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 - 14.6T + 79T^{2} \) |
| 83 | \( 1 - 7.32T + 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 - 8.80T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.993806603590335639693966883235, −9.374196677941368367166119762045, −8.835103908250827697934952024805, −7.76426141744736421978610604955, −6.73786279978762447872376856211, −6.08614701714544584583284460193, −4.73311298709595656065186771368, −3.24200346346171025388736787274, −2.80230362313066342390443122090, −1.71831668801011033245758345027,
1.71831668801011033245758345027, 2.80230362313066342390443122090, 3.24200346346171025388736787274, 4.73311298709595656065186771368, 6.08614701714544584583284460193, 6.73786279978762447872376856211, 7.76426141744736421978610604955, 8.835103908250827697934952024805, 9.374196677941368367166119762045, 9.993806603590335639693966883235