Properties

Label 2-832-1.1-c1-0-14
Degree $2$
Conductor $832$
Sign $1$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.11·3-s + 3.70·5-s − 4.20·7-s + 6.70·9-s − 1.09·11-s − 13-s + 11.5·15-s + 0.298·17-s + 1.09·19-s − 13.1·21-s + 8.70·25-s + 11.5·27-s + 2·29-s + 5.13·31-s − 3.40·33-s − 15.5·35-s + 3.70·37-s − 3.11·39-s − 9.40·41-s − 5.29·43-s + 24.8·45-s − 4.20·47-s + 10.7·49-s + 0.929·51-s − 1.40·53-s − 4.04·55-s + 3.40·57-s + ⋯
L(s)  = 1  + 1.79·3-s + 1.65·5-s − 1.59·7-s + 2.23·9-s − 0.329·11-s − 0.277·13-s + 2.97·15-s + 0.0723·17-s + 0.250·19-s − 2.85·21-s + 1.74·25-s + 2.21·27-s + 0.371·29-s + 0.922·31-s − 0.592·33-s − 2.63·35-s + 0.608·37-s − 0.498·39-s − 1.46·41-s − 0.808·43-s + 3.69·45-s − 0.613·47-s + 1.52·49-s + 0.130·51-s − 0.192·53-s − 0.545·55-s + 0.450·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $1$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.161716103\)
\(L(\frac12)\) \(\approx\) \(3.161716103\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 3.11T + 3T^{2} \)
5 \( 1 - 3.70T + 5T^{2} \)
7 \( 1 + 4.20T + 7T^{2} \)
11 \( 1 + 1.09T + 11T^{2} \)
17 \( 1 - 0.298T + 17T^{2} \)
19 \( 1 - 1.09T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 5.13T + 31T^{2} \)
37 \( 1 - 3.70T + 37T^{2} \)
41 \( 1 + 9.40T + 41T^{2} \)
43 \( 1 + 5.29T + 43T^{2} \)
47 \( 1 + 4.20T + 47T^{2} \)
53 \( 1 + 1.40T + 53T^{2} \)
59 \( 1 + 13.5T + 59T^{2} \)
61 \( 1 + 9.40T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 + 8.25T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 - 7.32T + 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 8.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.993806603590335639693966883235, −9.374196677941368367166119762045, −8.835103908250827697934952024805, −7.76426141744736421978610604955, −6.73786279978762447872376856211, −6.08614701714544584583284460193, −4.73311298709595656065186771368, −3.24200346346171025388736787274, −2.80230362313066342390443122090, −1.71831668801011033245758345027, 1.71831668801011033245758345027, 2.80230362313066342390443122090, 3.24200346346171025388736787274, 4.73311298709595656065186771368, 6.08614701714544584583284460193, 6.73786279978762447872376856211, 7.76426141744736421978610604955, 8.835103908250827697934952024805, 9.374196677941368367166119762045, 9.993806603590335639693966883235

Graph of the $Z$-function along the critical line