Properties

Label 2-832-1.1-c1-0-14
Degree 22
Conductor 832832
Sign 11
Analytic cond. 6.643556.64355
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.11·3-s + 3.70·5-s − 4.20·7-s + 6.70·9-s − 1.09·11-s − 13-s + 11.5·15-s + 0.298·17-s + 1.09·19-s − 13.1·21-s + 8.70·25-s + 11.5·27-s + 2·29-s + 5.13·31-s − 3.40·33-s − 15.5·35-s + 3.70·37-s − 3.11·39-s − 9.40·41-s − 5.29·43-s + 24.8·45-s − 4.20·47-s + 10.7·49-s + 0.929·51-s − 1.40·53-s − 4.04·55-s + 3.40·57-s + ⋯
L(s)  = 1  + 1.79·3-s + 1.65·5-s − 1.59·7-s + 2.23·9-s − 0.329·11-s − 0.277·13-s + 2.97·15-s + 0.0723·17-s + 0.250·19-s − 2.85·21-s + 1.74·25-s + 2.21·27-s + 0.371·29-s + 0.922·31-s − 0.592·33-s − 2.63·35-s + 0.608·37-s − 0.498·39-s − 1.46·41-s − 0.808·43-s + 3.69·45-s − 0.613·47-s + 1.52·49-s + 0.130·51-s − 0.192·53-s − 0.545·55-s + 0.450·57-s + ⋯

Functional equation

Λ(s)=(832s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(832s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 832832    =    26132^{6} \cdot 13
Sign: 11
Analytic conductor: 6.643556.64355
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 832, ( :1/2), 1)(2,\ 832,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 3.1617161033.161716103
L(12)L(\frac12) \approx 3.1617161033.161716103
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+T 1 + T
good3 13.11T+3T2 1 - 3.11T + 3T^{2}
5 13.70T+5T2 1 - 3.70T + 5T^{2}
7 1+4.20T+7T2 1 + 4.20T + 7T^{2}
11 1+1.09T+11T2 1 + 1.09T + 11T^{2}
17 10.298T+17T2 1 - 0.298T + 17T^{2}
19 11.09T+19T2 1 - 1.09T + 19T^{2}
23 1+23T2 1 + 23T^{2}
29 12T+29T2 1 - 2T + 29T^{2}
31 15.13T+31T2 1 - 5.13T + 31T^{2}
37 13.70T+37T2 1 - 3.70T + 37T^{2}
41 1+9.40T+41T2 1 + 9.40T + 41T^{2}
43 1+5.29T+43T2 1 + 5.29T + 43T^{2}
47 1+4.20T+47T2 1 + 4.20T + 47T^{2}
53 1+1.40T+53T2 1 + 1.40T + 53T^{2}
59 1+13.5T+59T2 1 + 13.5T + 59T^{2}
61 1+9.40T+61T2 1 + 9.40T + 61T^{2}
67 1+11.3T+67T2 1 + 11.3T + 67T^{2}
71 1+8.25T+71T2 1 + 8.25T + 71T^{2}
73 1+6T+73T2 1 + 6T + 73T^{2}
79 114.6T+79T2 1 - 14.6T + 79T^{2}
83 17.32T+83T2 1 - 7.32T + 83T^{2}
89 1+6T+89T2 1 + 6T + 89T^{2}
97 18.80T+97T2 1 - 8.80T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.993806603590335639693966883235, −9.374196677941368367166119762045, −8.835103908250827697934952024805, −7.76426141744736421978610604955, −6.73786279978762447872376856211, −6.08614701714544584583284460193, −4.73311298709595656065186771368, −3.24200346346171025388736787274, −2.80230362313066342390443122090, −1.71831668801011033245758345027, 1.71831668801011033245758345027, 2.80230362313066342390443122090, 3.24200346346171025388736787274, 4.73311298709595656065186771368, 6.08614701714544584583284460193, 6.73786279978762447872376856211, 7.76426141744736421978610604955, 8.835103908250827697934952024805, 9.374196677941368367166119762045, 9.993806603590335639693966883235

Graph of the ZZ-function along the critical line