Properties

Label 8-832e4-1.1-c1e4-0-16
Degree 88
Conductor 479174066176479174066176
Sign 11
Analytic cond. 1948.051948.05
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 6·9-s + 6·13-s + 2·17-s + 14·25-s + 10·29-s + 2·37-s + 10·41-s − 24·45-s + 14·49-s + 28·53-s + 10·61-s − 24·65-s + 12·73-s + 9·81-s − 8·85-s − 20·89-s − 36·97-s + 2·101-s − 24·109-s − 14·113-s + 36·117-s + 22·121-s − 64·125-s + 127-s + 131-s + 137-s + ⋯
L(s)  = 1  − 1.78·5-s + 2·9-s + 1.66·13-s + 0.485·17-s + 14/5·25-s + 1.85·29-s + 0.328·37-s + 1.56·41-s − 3.57·45-s + 2·49-s + 3.84·53-s + 1.28·61-s − 2.97·65-s + 1.40·73-s + 81-s − 0.867·85-s − 2.11·89-s − 3.65·97-s + 0.199·101-s − 2.29·109-s − 1.31·113-s + 3.32·117-s + 2·121-s − 5.72·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯

Functional equation

Λ(s)=((224134)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((224134)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2241342^{24} \cdot 13^{4}
Sign: 11
Analytic conductor: 1948.051948.05
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 224134, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{24} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 3.6360138483.636013848
L(12)L(\frac12) \approx 3.6360138483.636013848
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)Isogeny Class over Fp\mathbf{F}_p
bad2 1 1
13C22C_2^2 16T+23T26pT3+p2T4 1 - 6 T + 23 T^{2} - 6 p T^{3} + p^{2} T^{4}
good3C2C_2 (1pT+pT2)2(1+pT+pT2)2 ( 1 - p T + p T^{2} )^{2}( 1 + p T + p T^{2} )^{2} 4.3.a_ag_a_bb
5C22C_2^2 (1+2TT2+2pT3+p2T4)2 ( 1 + 2 T - T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} 4.5.e_c_q_dn
7C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.7.a_ao_a_fr
11C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.11.a_aw_a_nz
17C2C_2×\timesC22C_2^2 (12T+pT2)2(1+2T13T2+2pT3+p2T4) ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T - 13 T^{2} + 2 p T^{3} + p^{2} T^{4} ) 4.17.ac_r_dq_ahg
19C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.19.a_abm_a_bpr
23C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.23.a_abu_a_cjb
29C2C_2×\timesC22C_2^2 (110T+pT2)2(1+10T+71T2+10pT3+p2T4) ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 71 T^{2} + 10 p T^{3} + p^{2} T^{4} ) 4.29.ak_bd_afa_bya
31C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4} 4.31.a_eu_a_inu
37C2C_2×\timesC22C_2^2 (12T+pT2)2(1+2T33T2+2pT3+p2T4) ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} ) 4.37.ac_bl_ig_aqm
41C2C_2×\timesC22C_2^2 (110T+pT2)2(1+10T+59T2+10pT3+p2T4) ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 59 T^{2} + 10 p T^{3} + p^{2} T^{4} ) 4.41.ak_bp_iw_adkm
43C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.43.a_adi_a_ifj
47C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4} 4.47.a_hg_a_tpu
53C22C_2^2 (114T+143T214pT3+p2T4)2 ( 1 - 14 T + 143 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} 4.53.abc_so_aidc_crhr
59C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.59.a_aeo_a_plr
61C2C_2×\timesC22C_2^2 (110T+pT2)2(1+10T+39T2+10pT3+p2T4) ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + 39 T^{2} + 10 p T^{3} + p^{2} T^{4} ) 4.61.ak_cj_bfy_amhg
67C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.67.a_afe_a_txz
71C22C_2^2 (1pT2+p2T4)2 ( 1 - p T^{2} + p^{2} T^{4} )^{2} 4.71.a_afm_a_wjr
73C22C_2^2 (16T37T26pT3+p2T4)2 ( 1 - 6 T - 37 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} 4.73.am_abm_aqq_zot
79C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4} 4.79.a_me_a_cdkg
83C2C_2 (1+pT2)4 ( 1 + p T^{2} )^{4} 4.83.a_mu_a_cjdu
89C22C_2^2 (1+10T+11T2+10pT3+p2T4)2 ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} 4.89.u_es_cyy_bxyp
97C22C_2^2 (1+18T+227T2+18pT3+p2T4)2 ( 1 + 18 T + 227 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} 4.97.bk_bdy_rgq_hpbf
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.32456289254254282086171325256, −7.11478437130649698482413304070, −6.87360197021863132651143148562, −6.79139461715931586476520847496, −6.67124480121587678737305448806, −6.25588444438717162541363592433, −5.79282805802190037060522883054, −5.77039539865653728489539145373, −5.55435006928759479084408583914, −5.12764861783047012396148875616, −4.93694287971795001527906351117, −4.52353758887044459762626346130, −4.43843951632667894305509682956, −4.03567161531092997170504951083, −3.87615301317608835419108432422, −3.85499276898535288409211173056, −3.71032316470829712170155206853, −3.16518765702227992097418965696, −2.62214148073303372759935715417, −2.51782263686722652720846050597, −2.48251574095226401889594628541, −1.44294101272403318532430877000, −1.18668516801452826381590313233, −1.10320839767098872391392769323, −0.60562780862176733974533240617, 0.60562780862176733974533240617, 1.10320839767098872391392769323, 1.18668516801452826381590313233, 1.44294101272403318532430877000, 2.48251574095226401889594628541, 2.51782263686722652720846050597, 2.62214148073303372759935715417, 3.16518765702227992097418965696, 3.71032316470829712170155206853, 3.85499276898535288409211173056, 3.87615301317608835419108432422, 4.03567161531092997170504951083, 4.43843951632667894305509682956, 4.52353758887044459762626346130, 4.93694287971795001527906351117, 5.12764861783047012396148875616, 5.55435006928759479084408583914, 5.77039539865653728489539145373, 5.79282805802190037060522883054, 6.25588444438717162541363592433, 6.67124480121587678737305448806, 6.79139461715931586476520847496, 6.87360197021863132651143148562, 7.11478437130649698482413304070, 7.32456289254254282086171325256

Graph of the ZZ-function along the critical line