L(s) = 1 | − 4·5-s + 6·9-s + 6·13-s + 2·17-s + 14·25-s + 10·29-s + 2·37-s + 10·41-s − 24·45-s + 14·49-s + 28·53-s + 10·61-s − 24·65-s + 12·73-s + 9·81-s − 8·85-s − 20·89-s − 36·97-s + 2·101-s − 24·109-s − 14·113-s + 36·117-s + 22·121-s − 64·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 2·9-s + 1.66·13-s + 0.485·17-s + 14/5·25-s + 1.85·29-s + 0.328·37-s + 1.56·41-s − 3.57·45-s + 2·49-s + 3.84·53-s + 1.28·61-s − 2.97·65-s + 1.40·73-s + 81-s − 0.867·85-s − 2.11·89-s − 3.65·97-s + 0.199·101-s − 2.29·109-s − 1.31·113-s + 3.32·117-s + 2·121-s − 5.72·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.636013848 |
L(21) |
≈ |
3.636013848 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) | Isogeny Class over Fp |
---|
bad | 2 | | 1 | |
| 13 | C22 | 1−6T+23T2−6pT3+p2T4 | |
good | 3 | C2 | (1−pT+pT2)2(1+pT+pT2)2 | 4.3.a_ag_a_bb |
| 5 | C22 | (1+2T−T2+2pT3+p2T4)2 | 4.5.e_c_q_dn |
| 7 | C22 | (1−pT2+p2T4)2 | 4.7.a_ao_a_fr |
| 11 | C22 | (1−pT2+p2T4)2 | 4.11.a_aw_a_nz |
| 17 | C2×C22 | (1−2T+pT2)2(1+2T−13T2+2pT3+p2T4) | 4.17.ac_r_dq_ahg |
| 19 | C22 | (1−pT2+p2T4)2 | 4.19.a_abm_a_bpr |
| 23 | C22 | (1−pT2+p2T4)2 | 4.23.a_abu_a_cjb |
| 29 | C2×C22 | (1−10T+pT2)2(1+10T+71T2+10pT3+p2T4) | 4.29.ak_bd_afa_bya |
| 31 | C2 | (1+pT2)4 | 4.31.a_eu_a_inu |
| 37 | C2×C22 | (1−2T+pT2)2(1+2T−33T2+2pT3+p2T4) | 4.37.ac_bl_ig_aqm |
| 41 | C2×C22 | (1−10T+pT2)2(1+10T+59T2+10pT3+p2T4) | 4.41.ak_bp_iw_adkm |
| 43 | C22 | (1−pT2+p2T4)2 | 4.43.a_adi_a_ifj |
| 47 | C2 | (1+pT2)4 | 4.47.a_hg_a_tpu |
| 53 | C22 | (1−14T+143T2−14pT3+p2T4)2 | 4.53.abc_so_aidc_crhr |
| 59 | C22 | (1−pT2+p2T4)2 | 4.59.a_aeo_a_plr |
| 61 | C2×C22 | (1−10T+pT2)2(1+10T+39T2+10pT3+p2T4) | 4.61.ak_cj_bfy_amhg |
| 67 | C22 | (1−pT2+p2T4)2 | 4.67.a_afe_a_txz |
| 71 | C22 | (1−pT2+p2T4)2 | 4.71.a_afm_a_wjr |
| 73 | C22 | (1−6T−37T2−6pT3+p2T4)2 | 4.73.am_abm_aqq_zot |
| 79 | C2 | (1+pT2)4 | 4.79.a_me_a_cdkg |
| 83 | C2 | (1+pT2)4 | 4.83.a_mu_a_cjdu |
| 89 | C22 | (1+10T+11T2+10pT3+p2T4)2 | 4.89.u_es_cyy_bxyp |
| 97 | C22 | (1+18T+227T2+18pT3+p2T4)2 | 4.97.bk_bdy_rgq_hpbf |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.32456289254254282086171325256, −7.11478437130649698482413304070, −6.87360197021863132651143148562, −6.79139461715931586476520847496, −6.67124480121587678737305448806, −6.25588444438717162541363592433, −5.79282805802190037060522883054, −5.77039539865653728489539145373, −5.55435006928759479084408583914, −5.12764861783047012396148875616, −4.93694287971795001527906351117, −4.52353758887044459762626346130, −4.43843951632667894305509682956, −4.03567161531092997170504951083, −3.87615301317608835419108432422, −3.85499276898535288409211173056, −3.71032316470829712170155206853, −3.16518765702227992097418965696, −2.62214148073303372759935715417, −2.51782263686722652720846050597, −2.48251574095226401889594628541, −1.44294101272403318532430877000, −1.18668516801452826381590313233, −1.10320839767098872391392769323, −0.60562780862176733974533240617,
0.60562780862176733974533240617, 1.10320839767098872391392769323, 1.18668516801452826381590313233, 1.44294101272403318532430877000, 2.48251574095226401889594628541, 2.51782263686722652720846050597, 2.62214148073303372759935715417, 3.16518765702227992097418965696, 3.71032316470829712170155206853, 3.85499276898535288409211173056, 3.87615301317608835419108432422, 4.03567161531092997170504951083, 4.43843951632667894305509682956, 4.52353758887044459762626346130, 4.93694287971795001527906351117, 5.12764861783047012396148875616, 5.55435006928759479084408583914, 5.77039539865653728489539145373, 5.79282805802190037060522883054, 6.25588444438717162541363592433, 6.67124480121587678737305448806, 6.79139461715931586476520847496, 6.87360197021863132651143148562, 7.11478437130649698482413304070, 7.32456289254254282086171325256