Properties

Label 2-832-52.31-c1-0-20
Degree $2$
Conductor $832$
Sign $-0.289 + 0.957i$
Analytic cond. $6.64355$
Root an. cond. $2.57750$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·3-s + (1 − i)5-s + (−1 + i)7-s − 9-s + (3 − 3i)11-s + (3 + 2i)13-s + (−2 − 2i)15-s − 4i·17-s + (−3 − 3i)19-s + (2 + 2i)21-s + 3i·25-s − 4i·27-s + 6·29-s + (−3 − 3i)31-s + (−6 − 6i)33-s + ⋯
L(s)  = 1  − 1.15i·3-s + (0.447 − 0.447i)5-s + (−0.377 + 0.377i)7-s − 0.333·9-s + (0.904 − 0.904i)11-s + (0.832 + 0.554i)13-s + (−0.516 − 0.516i)15-s − 0.970i·17-s + (−0.688 − 0.688i)19-s + (0.436 + 0.436i)21-s + 0.600i·25-s − 0.769i·27-s + 1.11·29-s + (−0.538 − 0.538i)31-s + (−1.04 − 1.04i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(832\)    =    \(2^{6} \cdot 13\)
Sign: $-0.289 + 0.957i$
Analytic conductor: \(6.64355\)
Root analytic conductor: \(2.57750\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{832} (447, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 832,\ (\ :1/2),\ -0.289 + 0.957i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.00220 - 1.35058i\)
\(L(\frac12)\) \(\approx\) \(1.00220 - 1.35058i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (-3 - 2i)T \)
good3 \( 1 + 2iT - 3T^{2} \)
5 \( 1 + (-1 + i)T - 5iT^{2} \)
7 \( 1 + (1 - i)T - 7iT^{2} \)
11 \( 1 + (-3 + 3i)T - 11iT^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 + (3 + 3i)T + 19iT^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (3 + 3i)T + 31iT^{2} \)
37 \( 1 + (3 + 3i)T + 37iT^{2} \)
41 \( 1 + (-1 + i)T - 41iT^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + (5 - 5i)T - 47iT^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + (-7 + 7i)T - 59iT^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 + (-5 - 5i)T + 67iT^{2} \)
71 \( 1 + (-5 - 5i)T + 71iT^{2} \)
73 \( 1 + (-9 - 9i)T + 73iT^{2} \)
79 \( 1 + 6iT - 79T^{2} \)
83 \( 1 + (7 + 7i)T + 83iT^{2} \)
89 \( 1 + (-5 - 5i)T + 89iT^{2} \)
97 \( 1 + (-13 + 13i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.708403092534637786804036800911, −8.995431566054248029515318066996, −8.396730058539729071390433655237, −7.21698868902712111422462086917, −6.46051528107077955140448040257, −5.90751983764270213542656122899, −4.62534235882220824563664931861, −3.28913799709141643361790041770, −1.98793623399283218921870429115, −0.895926574942647178341408004396, 1.71074380767192155364519340326, 3.36549589406317037280628271231, 4.01739117261477378838166576793, 4.96637276383498824820393105142, 6.23806116816370123029569142599, 6.73358889978087964893655867521, 8.100381838567916013992286606119, 8.958583613492962289766076424109, 9.903280872059627338439098261168, 10.33194415367299669034685782811

Graph of the $Z$-function along the critical line