Properties

Label 2-832-52.31-c1-0-20
Degree 22
Conductor 832832
Sign 0.289+0.957i-0.289 + 0.957i
Analytic cond. 6.643556.64355
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·3-s + (1 − i)5-s + (−1 + i)7-s − 9-s + (3 − 3i)11-s + (3 + 2i)13-s + (−2 − 2i)15-s − 4i·17-s + (−3 − 3i)19-s + (2 + 2i)21-s + 3i·25-s − 4i·27-s + 6·29-s + (−3 − 3i)31-s + (−6 − 6i)33-s + ⋯
L(s)  = 1  − 1.15i·3-s + (0.447 − 0.447i)5-s + (−0.377 + 0.377i)7-s − 0.333·9-s + (0.904 − 0.904i)11-s + (0.832 + 0.554i)13-s + (−0.516 − 0.516i)15-s − 0.970i·17-s + (−0.688 − 0.688i)19-s + (0.436 + 0.436i)21-s + 0.600i·25-s − 0.769i·27-s + 1.11·29-s + (−0.538 − 0.538i)31-s + (−1.04 − 1.04i)33-s + ⋯

Functional equation

Λ(s)=(832s/2ΓC(s)L(s)=((0.289+0.957i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(832s/2ΓC(s+1/2)L(s)=((0.289+0.957i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.289 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 832832    =    26132^{6} \cdot 13
Sign: 0.289+0.957i-0.289 + 0.957i
Analytic conductor: 6.643556.64355
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ832(447,)\chi_{832} (447, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 832, ( :1/2), 0.289+0.957i)(2,\ 832,\ (\ :1/2),\ -0.289 + 0.957i)

Particular Values

L(1)L(1) \approx 1.002201.35058i1.00220 - 1.35058i
L(12)L(\frac12) \approx 1.002201.35058i1.00220 - 1.35058i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+(32i)T 1 + (-3 - 2i)T
good3 1+2iT3T2 1 + 2iT - 3T^{2}
5 1+(1+i)T5iT2 1 + (-1 + i)T - 5iT^{2}
7 1+(1i)T7iT2 1 + (1 - i)T - 7iT^{2}
11 1+(3+3i)T11iT2 1 + (-3 + 3i)T - 11iT^{2}
17 1+4iT17T2 1 + 4iT - 17T^{2}
19 1+(3+3i)T+19iT2 1 + (3 + 3i)T + 19iT^{2}
23 1+23T2 1 + 23T^{2}
29 16T+29T2 1 - 6T + 29T^{2}
31 1+(3+3i)T+31iT2 1 + (3 + 3i)T + 31iT^{2}
37 1+(3+3i)T+37iT2 1 + (3 + 3i)T + 37iT^{2}
41 1+(1+i)T41iT2 1 + (-1 + i)T - 41iT^{2}
43 1+4T+43T2 1 + 4T + 43T^{2}
47 1+(55i)T47iT2 1 + (5 - 5i)T - 47iT^{2}
53 1+6T+53T2 1 + 6T + 53T^{2}
59 1+(7+7i)T59iT2 1 + (-7 + 7i)T - 59iT^{2}
61 1+14T+61T2 1 + 14T + 61T^{2}
67 1+(55i)T+67iT2 1 + (-5 - 5i)T + 67iT^{2}
71 1+(55i)T+71iT2 1 + (-5 - 5i)T + 71iT^{2}
73 1+(99i)T+73iT2 1 + (-9 - 9i)T + 73iT^{2}
79 1+6iT79T2 1 + 6iT - 79T^{2}
83 1+(7+7i)T+83iT2 1 + (7 + 7i)T + 83iT^{2}
89 1+(55i)T+89iT2 1 + (-5 - 5i)T + 89iT^{2}
97 1+(13+13i)T97iT2 1 + (-13 + 13i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.708403092534637786804036800911, −8.995431566054248029515318066996, −8.396730058539729071390433655237, −7.21698868902712111422462086917, −6.46051528107077955140448040257, −5.90751983764270213542656122899, −4.62534235882220824563664931861, −3.28913799709141643361790041770, −1.98793623399283218921870429115, −0.895926574942647178341408004396, 1.71074380767192155364519340326, 3.36549589406317037280628271231, 4.01739117261477378838166576793, 4.96637276383498824820393105142, 6.23806116816370123029569142599, 6.73358889978087964893655867521, 8.100381838567916013992286606119, 8.958583613492962289766076424109, 9.903280872059627338439098261168, 10.33194415367299669034685782811

Graph of the ZZ-function along the critical line