L(s) = 1 | + (3 + 3i)5-s + 3·9-s + (2 − 3i)13-s − 2i·17-s + 13i·25-s − 4·29-s + (−5 + 5i)37-s + (−1 − i)41-s + (9 + 9i)45-s − 7i·49-s + 14·53-s − 10·61-s + (15 − 3i)65-s + (−11 + 11i)73-s + 9·81-s + ⋯ |
L(s) = 1 | + (1.34 + 1.34i)5-s + 9-s + (0.554 − 0.832i)13-s − 0.485i·17-s + 2.60i·25-s − 0.742·29-s + (−0.821 + 0.821i)37-s + (−0.156 − 0.156i)41-s + (1.34 + 1.34i)45-s − i·49-s + 1.92·53-s − 1.28·61-s + (1.86 − 0.372i)65-s + (−1.28 + 1.28i)73-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.772 - 0.635i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.772 - 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00095 + 0.717726i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00095 + 0.717726i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-2 + 3i)T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 5 | \( 1 + (-3 - 3i)T + 5iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + 11iT^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (5 - 5i)T - 37iT^{2} \) |
| 41 | \( 1 + (1 + i)T + 41iT^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 14T + 53T^{2} \) |
| 59 | \( 1 + 59iT^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - 67iT^{2} \) |
| 71 | \( 1 - 71iT^{2} \) |
| 73 | \( 1 + (11 - 11i)T - 73iT^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83iT^{2} \) |
| 89 | \( 1 + (-3 + 3i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5 - 5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25437543733590830410422149246, −9.764383010643347503038070439514, −8.761724540546358396259063182468, −7.45498602611460800887500202683, −6.86923149048460101023629218517, −6.00360825524516310341230000612, −5.19860103927476500618244190682, −3.70749005878902586892220257092, −2.71410711079496679402404178008, −1.58650910479118563036547618736,
1.27847269822031012200981449224, 2.06267887484507689610796891161, 3.94556229738373482275029963228, 4.77857940341211382052236648333, 5.71499546795686880561942593312, 6.47383511891298247904067413358, 7.58515108176523553304441013961, 8.796903204482485740554965196373, 9.160351301620663488834892388959, 10.01380297483268663077915706474