L(s) = 1 | + i·3-s + (1.58 + 1.58i)5-s + (1.58 + 1.58i)7-s + 2·9-s + (4.16 + 4.16i)11-s + (−3.58 + 0.418i)13-s + (−1.58 + 1.58i)15-s − 7.32i·17-s + (1.16 − 1.16i)19-s + (−1.58 + 1.58i)21-s − 7.16·23-s + 5i·27-s + 1.16·29-s + (1.16 − 1.16i)31-s + (−4.16 + 4.16i)33-s + ⋯ |
L(s) = 1 | + 0.577i·3-s + (0.707 + 0.707i)5-s + (0.597 + 0.597i)7-s + 0.666·9-s + (1.25 + 1.25i)11-s + (−0.993 + 0.116i)13-s + (−0.408 + 0.408i)15-s − 1.77i·17-s + (0.266 − 0.266i)19-s + (−0.345 + 0.345i)21-s − 1.49·23-s + 0.962i·27-s + 0.215·29-s + (0.208 − 0.208i)31-s + (−0.724 + 0.724i)33-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(0.176−0.984i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(0.176−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
0.176−0.984i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), 0.176−0.984i)
|
Particular Values
L(1) |
≈ |
1.53429+1.28346i |
L(21) |
≈ |
1.53429+1.28346i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(3.58−0.418i)T |
good | 3 | 1−iT−3T2 |
| 5 | 1+(−1.58−1.58i)T+5iT2 |
| 7 | 1+(−1.58−1.58i)T+7iT2 |
| 11 | 1+(−4.16−4.16i)T+11iT2 |
| 17 | 1+7.32iT−17T2 |
| 19 | 1+(−1.16+1.16i)T−19iT2 |
| 23 | 1+7.16T+23T2 |
| 29 | 1−1.16T+29T2 |
| 31 | 1+(−1.16+1.16i)T−31iT2 |
| 37 | 1+(−3.58+3.58i)T−37iT2 |
| 41 | 1+(−5.16−5.16i)T+41iT2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(−6.74−6.74i)T+47iT2 |
| 53 | 1+9.48T+53T2 |
| 59 | 1+(4+4i)T+59iT2 |
| 61 | 1+2T+61T2 |
| 67 | 1+(7.32−7.32i)T−67iT2 |
| 71 | 1+(−1.58+1.58i)T−71iT2 |
| 73 | 1+(6−6i)T−73iT2 |
| 79 | 1+3.48iT−79T2 |
| 83 | 1+(−5.83+5.83i)T−83iT2 |
| 89 | 1+(2.83−2.83i)T−89iT2 |
| 97 | 1+(3.83+3.83i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00628198435242968847048871249, −9.730510680209070965464954466179, −9.124698414770746559910754034372, −7.62717068919599713478781513719, −7.01570927895490141020769344955, −6.06415238159019724414418488628, −4.83577766874624744071703040557, −4.33049498478028715275291539062, −2.73850132333793788318946288493, −1.80589258387814198434170554441,
1.13055972747717683391360899055, 1.87662111953807492038533167085, 3.72861615547987754397050507290, 4.56478013553522972578217505363, 5.83980890013127581453489487632, 6.40678641852645980965417642592, 7.58676259482904407910120601333, 8.247893994105642261646282968000, 9.151282269567431503194652708632, 10.03612511894147779435084905340