L(s) = 1 | − i·3-s + (−1.58 + 1.58i)5-s + (−1.58 + 1.58i)7-s + 2·9-s + (−2.16 + 2.16i)11-s + (−0.418 − 3.58i)13-s + (1.58 + 1.58i)15-s − 5.32i·17-s + (−5.16 − 5.16i)19-s + (1.58 + 1.58i)21-s − 0.837·23-s − 5i·27-s − 5.16·29-s + (−5.16 − 5.16i)31-s + (2.16 + 2.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 + 0.707i)5-s + (−0.597 + 0.597i)7-s + 0.666·9-s + (−0.651 + 0.651i)11-s + (−0.116 − 0.993i)13-s + (0.408 + 0.408i)15-s − 1.29i·17-s + (−1.18 − 1.18i)19-s + (0.345 + 0.345i)21-s − 0.174·23-s − 0.962i·27-s − 0.958·29-s + (−0.927 − 0.927i)31-s + (0.376 + 0.376i)33-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.916+0.399i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.916+0.399i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.916+0.399i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(447,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), −0.916+0.399i)
|
Particular Values
L(1) |
≈ |
0.0644345−0.309561i |
L(21) |
≈ |
0.0644345−0.309561i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(0.418+3.58i)T |
good | 3 | 1+iT−3T2 |
| 5 | 1+(1.58−1.58i)T−5iT2 |
| 7 | 1+(1.58−1.58i)T−7iT2 |
| 11 | 1+(2.16−2.16i)T−11iT2 |
| 17 | 1+5.32iT−17T2 |
| 19 | 1+(5.16+5.16i)T+19iT2 |
| 23 | 1+0.837T+23T2 |
| 29 | 1+5.16T+29T2 |
| 31 | 1+(5.16+5.16i)T+31iT2 |
| 37 | 1+(−0.418−0.418i)T+37iT2 |
| 41 | 1+(1.16−1.16i)T−41iT2 |
| 43 | 1+5T+43T2 |
| 47 | 1+(2.74−2.74i)T−47iT2 |
| 53 | 1−9.48T+53T2 |
| 59 | 1+(4−4i)T−59iT2 |
| 61 | 1+2T+61T2 |
| 67 | 1+(−5.32−5.32i)T+67iT2 |
| 71 | 1+(1.58+1.58i)T+71iT2 |
| 73 | 1+(6+6i)T+73iT2 |
| 79 | 1+15.4iT−79T2 |
| 83 | 1+(−12.1−12.1i)T+83iT2 |
| 89 | 1+(9.16+9.16i)T+89iT2 |
| 97 | 1+(10.1−10.1i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.867372595472121538325236328496, −9.052569281431609077859926535143, −7.81172137108504189357303348753, −7.32074279751196202585049449167, −6.62174779970296582739392750507, −5.48019395920802573787781343012, −4.37983264279784316451336793887, −3.09428415314027232201116418594, −2.25288487243295406711082711960, −0.14844604267786918251094262128,
1.73133344228739641067116608804, 3.78628784388494463913476118255, 3.93589391652996748306899650805, 5.09947955730652492697323486017, 6.24982682638733796889779509273, 7.19324068356944653037168317602, 8.213806234456429725807504407086, 8.797963965303228813876269835145, 9.898511690464895932606735839967, 10.46465667009714537382434523075