L(s) = 1 | − i·3-s + (−1.58 + 1.58i)5-s + (−1.58 + 1.58i)7-s + 2·9-s + (−2.16 + 2.16i)11-s + (−0.418 − 3.58i)13-s + (1.58 + 1.58i)15-s − 5.32i·17-s + (−5.16 − 5.16i)19-s + (1.58 + 1.58i)21-s − 0.837·23-s − 5i·27-s − 5.16·29-s + (−5.16 − 5.16i)31-s + (2.16 + 2.16i)33-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.707 + 0.707i)5-s + (−0.597 + 0.597i)7-s + 0.666·9-s + (−0.651 + 0.651i)11-s + (−0.116 − 0.993i)13-s + (0.408 + 0.408i)15-s − 1.29i·17-s + (−1.18 − 1.18i)19-s + (0.345 + 0.345i)21-s − 0.174·23-s − 0.962i·27-s − 0.958·29-s + (−0.927 − 0.927i)31-s + (0.376 + 0.376i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.916 + 0.399i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0644345 - 0.309561i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0644345 - 0.309561i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (0.418 + 3.58i)T \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 5 | \( 1 + (1.58 - 1.58i)T - 5iT^{2} \) |
| 7 | \( 1 + (1.58 - 1.58i)T - 7iT^{2} \) |
| 11 | \( 1 + (2.16 - 2.16i)T - 11iT^{2} \) |
| 17 | \( 1 + 5.32iT - 17T^{2} \) |
| 19 | \( 1 + (5.16 + 5.16i)T + 19iT^{2} \) |
| 23 | \( 1 + 0.837T + 23T^{2} \) |
| 29 | \( 1 + 5.16T + 29T^{2} \) |
| 31 | \( 1 + (5.16 + 5.16i)T + 31iT^{2} \) |
| 37 | \( 1 + (-0.418 - 0.418i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.16 - 1.16i)T - 41iT^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (2.74 - 2.74i)T - 47iT^{2} \) |
| 53 | \( 1 - 9.48T + 53T^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + (-5.32 - 5.32i)T + 67iT^{2} \) |
| 71 | \( 1 + (1.58 + 1.58i)T + 71iT^{2} \) |
| 73 | \( 1 + (6 + 6i)T + 73iT^{2} \) |
| 79 | \( 1 + 15.4iT - 79T^{2} \) |
| 83 | \( 1 + (-12.1 - 12.1i)T + 83iT^{2} \) |
| 89 | \( 1 + (9.16 + 9.16i)T + 89iT^{2} \) |
| 97 | \( 1 + (10.1 - 10.1i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.867372595472121538325236328496, −9.052569281431609077859926535143, −7.81172137108504189357303348753, −7.32074279751196202585049449167, −6.62174779970296582739392750507, −5.48019395920802573787781343012, −4.37983264279784316451336793887, −3.09428415314027232201116418594, −2.25288487243295406711082711960, −0.14844604267786918251094262128,
1.73133344228739641067116608804, 3.78628784388494463913476118255, 3.93589391652996748306899650805, 5.09947955730652492697323486017, 6.24982682638733796889779509273, 7.19324068356944653037168317602, 8.213806234456429725807504407086, 8.797963965303228813876269835145, 9.898511690464895932606735839967, 10.46465667009714537382434523075