L(s) = 1 | − 2.79i·3-s + (0.707 + 0.707i)5-s + (−1.97 − 1.97i)7-s − 4.82·9-s + (−1.15 − 1.15i)11-s + (−3.53 − 0.707i)13-s + (1.97 − 1.97i)15-s + 5.82i·17-s + (−1.63 + 1.63i)19-s + (−5.53 + 5.53i)21-s − 3.95·23-s − 4i·25-s + 5.11i·27-s + 0.585·29-s + (3.95 − 3.95i)31-s + ⋯ |
L(s) = 1 | − 1.61i·3-s + (0.316 + 0.316i)5-s + (−0.747 − 0.747i)7-s − 1.60·9-s + (−0.349 − 0.349i)11-s + (−0.980 − 0.196i)13-s + (0.510 − 0.510i)15-s + 1.41i·17-s + (−0.376 + 0.376i)19-s + (−1.20 + 1.20i)21-s − 0.825·23-s − 0.800i·25-s + 0.984i·27-s + 0.108·29-s + (0.710 − 0.710i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.156590 + 0.624452i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.156590 + 0.624452i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.53 + 0.707i)T \) |
good | 3 | \( 1 + 2.79iT - 3T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.707i)T + 5iT^{2} \) |
| 7 | \( 1 + (1.97 + 1.97i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.15 + 1.15i)T + 11iT^{2} \) |
| 17 | \( 1 - 5.82iT - 17T^{2} \) |
| 19 | \( 1 + (1.63 - 1.63i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.95T + 23T^{2} \) |
| 29 | \( 1 - 0.585T + 29T^{2} \) |
| 31 | \( 1 + (-3.95 + 3.95i)T - 31iT^{2} \) |
| 37 | \( 1 + (-1.87 + 1.87i)T - 37iT^{2} \) |
| 41 | \( 1 + (4.24 + 4.24i)T + 41iT^{2} \) |
| 43 | \( 1 + 5.11T + 43T^{2} \) |
| 47 | \( 1 + (-1.97 - 1.97i)T + 47iT^{2} \) |
| 53 | \( 1 - 0.242T + 53T^{2} \) |
| 59 | \( 1 + (-2.31 - 2.31i)T + 59iT^{2} \) |
| 61 | \( 1 + 0.828T + 61T^{2} \) |
| 67 | \( 1 + (-2.79 + 2.79i)T - 67iT^{2} \) |
| 71 | \( 1 + (5.25 - 5.25i)T - 71iT^{2} \) |
| 73 | \( 1 + (9.65 - 9.65i)T - 73iT^{2} \) |
| 79 | \( 1 + 9.55iT - 79T^{2} \) |
| 83 | \( 1 + (6.75 - 6.75i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.24 + 6.24i)T - 89iT^{2} \) |
| 97 | \( 1 + (-0.414 - 0.414i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03289551943845192124042706261, −8.535652550281100975533150414345, −7.891031697241568629432037349432, −7.08996850275575455138508461534, −6.35723832516745330083307404362, −5.76698897986102220034456523943, −4.11490820980019289112985037922, −2.81595902846700566324073422013, −1.83509022863634520125258108749, −0.29154209070280056762651201965,
2.47212299169159612768651097718, 3.33853173270043554407587153831, 4.71714689637399333929828978614, 5.05106218269654463357466806780, 6.11532833460491212666857296483, 7.26151081563176313301855819938, 8.570099782217173949096027606081, 9.309257995555090647888265855070, 9.789962934227032737223314629186, 10.32755614596692000996799873458