L(s) = 1 | + (0.5 − 0.866i)3-s + (1.5 − 0.866i)7-s + (1 + 1.73i)9-s + (−4.5 − 2.59i)11-s + (1 − 3.46i)13-s + (−1.5 − 2.59i)17-s + (4.5 − 2.59i)19-s − 1.73i·21-s + (1.5 − 2.59i)23-s + 5·25-s + 5·27-s + (−4.5 + 7.79i)29-s − 3.46i·31-s + (−4.5 + 2.59i)33-s + (4.5 + 2.59i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.566 − 0.327i)7-s + (0.333 + 0.577i)9-s + (−1.35 − 0.783i)11-s + (0.277 − 0.960i)13-s + (−0.363 − 0.630i)17-s + (1.03 − 0.596i)19-s − 0.377i·21-s + (0.312 − 0.541i)23-s + 25-s + 0.962·27-s + (−0.835 + 1.44i)29-s − 0.622i·31-s + (−0.783 + 0.452i)33-s + (0.739 + 0.427i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34494 - 1.03887i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34494 - 1.03887i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-1 + 3.46i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + (-1.5 + 0.866i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (4.5 + 2.59i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.5 + 2.59i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-4.5 - 2.59i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 + 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.5 + 4.33i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 10.3iT - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-4.5 + 2.59i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 + 4.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.5 - 0.866i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.5 - 2.59i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 6.92iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 10.3iT - 83T^{2} \) |
| 89 | \( 1 + (-13.5 - 7.79i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.5 - 6.06i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31503524328198483141895345963, −8.976548971716661640934192511898, −8.201506502791632057572819117840, −7.56427520077237440033991204620, −6.84279591294941303602040513716, −5.32912677802056052622688668255, −4.97398483724548458927615438038, −3.31555172318826113635086005505, −2.41125670436426121618266346002, −0.860314644930346066710323674798,
1.64064098834355750196745115911, 2.92845375289402828070385524410, 4.13513327542318798151665681717, 4.90281171020131602204109687140, 5.93184072501768105738824637400, 7.07576985719399612511789729933, 7.889114224064183486547612356320, 8.789513293085576806440272042691, 9.607237973928931633645933544857, 10.21627299817431732894506181335