Properties

Label 2-832-13.4-c1-0-21
Degree 22
Conductor 832832
Sign 0.895+0.446i-0.895 + 0.446i
Analytic cond. 6.643556.64355
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.13 + 1.96i)3-s − 3.99i·5-s + (0.981 − 0.566i)7-s + (−1.06 − 1.84i)9-s + (−0.981 − 0.566i)11-s + (−3.59 − 0.266i)13-s + (7.84 + 4.52i)15-s + (−0.5 − 0.866i)17-s + (−3.39 + 1.96i)19-s + 2.56i·21-s + (−4.59 + 7.96i)23-s − 10.9·25-s − 1.96·27-s + (−2.02 + 3.51i)29-s − 9.05i·31-s + ⋯
L(s)  = 1  + (−0.654 + 1.13i)3-s − 1.78i·5-s + (0.371 − 0.214i)7-s + (−0.355 − 0.615i)9-s + (−0.295 − 0.170i)11-s + (−0.997 − 0.0740i)13-s + (2.02 + 1.16i)15-s + (−0.121 − 0.210i)17-s + (−0.779 + 0.450i)19-s + 0.560i·21-s + (−0.958 + 1.66i)23-s − 2.19·25-s − 0.377·27-s + (−0.376 + 0.652i)29-s − 1.62i·31-s + ⋯

Functional equation

Λ(s)=(832s/2ΓC(s)L(s)=((0.895+0.446i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.895 + 0.446i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(832s/2ΓC(s+1/2)L(s)=((0.895+0.446i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 832 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.895 + 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 832832    =    26132^{6} \cdot 13
Sign: 0.895+0.446i-0.895 + 0.446i
Analytic conductor: 6.643556.64355
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ832(641,)\chi_{832} (641, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 832, ( :1/2), 0.895+0.446i)(2,\ 832,\ (\ :1/2),\ -0.895 + 0.446i)

Particular Values

L(1)L(1) \approx 0.04888350.207677i0.0488835 - 0.207677i
L(12)L(\frac12) \approx 0.04888350.207677i0.0488835 - 0.207677i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
13 1+(3.59+0.266i)T 1 + (3.59 + 0.266i)T
good3 1+(1.131.96i)T+(1.52.59i)T2 1 + (1.13 - 1.96i)T + (-1.5 - 2.59i)T^{2}
5 1+3.99iT5T2 1 + 3.99iT - 5T^{2}
7 1+(0.981+0.566i)T+(3.56.06i)T2 1 + (-0.981 + 0.566i)T + (3.5 - 6.06i)T^{2}
11 1+(0.981+0.566i)T+(5.5+9.52i)T2 1 + (0.981 + 0.566i)T + (5.5 + 9.52i)T^{2}
17 1+(0.5+0.866i)T+(8.5+14.7i)T2 1 + (0.5 + 0.866i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.391.96i)T+(9.516.4i)T2 1 + (3.39 - 1.96i)T + (9.5 - 16.4i)T^{2}
23 1+(4.597.96i)T+(11.519.9i)T2 1 + (4.59 - 7.96i)T + (-11.5 - 19.9i)T^{2}
29 1+(2.023.51i)T+(14.525.1i)T2 1 + (2.02 - 3.51i)T + (-14.5 - 25.1i)T^{2}
31 1+9.05iT31T2 1 + 9.05iT - 31T^{2}
37 1+(2.16+1.24i)T+(18.5+32.0i)T2 1 + (2.16 + 1.24i)T + (18.5 + 32.0i)T^{2}
41 1+(2.42+1.39i)T+(20.5+35.5i)T2 1 + (2.42 + 1.39i)T + (20.5 + 35.5i)T^{2}
43 1+(3.245.62i)T+(21.5+37.2i)T2 1 + (-3.24 - 5.62i)T + (-21.5 + 37.2i)T^{2}
47 1+6.79iT47T2 1 + 6.79iT - 47T^{2}
53 18.92T+53T2 1 - 8.92T + 53T^{2}
59 1+(7.77+4.49i)T+(29.551.0i)T2 1 + (-7.77 + 4.49i)T + (29.5 - 51.0i)T^{2}
61 1+(3.89+6.74i)T+(30.5+52.8i)T2 1 + (3.89 + 6.74i)T + (-30.5 + 52.8i)T^{2}
67 1+(8.36+4.82i)T+(33.5+58.0i)T2 1 + (8.36 + 4.82i)T + (33.5 + 58.0i)T^{2}
71 1+(6.863.96i)T+(35.561.4i)T2 1 + (6.86 - 3.96i)T + (35.5 - 61.4i)T^{2}
73 1+9.29iT73T2 1 + 9.29iT - 73T^{2}
79 1+12.9T+79T2 1 + 12.9T + 79T^{2}
83 15.73iT83T2 1 - 5.73iT - 83T^{2}
89 1+(12.17.01i)T+(44.5+77.0i)T2 1 + (-12.1 - 7.01i)T + (44.5 + 77.0i)T^{2}
97 1+(7.704.44i)T+(48.584.0i)T2 1 + (7.70 - 4.44i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.713852152347112756907748688123, −9.307917451276004435246575169287, −8.234813512649756088111076142912, −7.53714439958119048920253532424, −5.80311143699301186345121947835, −5.29788308080208709186588246371, −4.52750773694219081416850962596, −3.87589369729132173357941324867, −1.82682994441042935999692026541, −0.10597681615621885245657765640, 2.03168274348223613501746682388, 2.73741550835237352039293393700, 4.27918425659581991965164717656, 5.63516114469575871167772920068, 6.50168567099011332860051071513, 6.99652198774928423043266685049, 7.65450836284052770372767564406, 8.690728356885653481513869023316, 10.25062276131043177052867371227, 10.46041913292995635121862841421

Graph of the ZZ-function along the critical line