L(s) = 1 | + (−1.12 + 1.12i)2-s + (−1.18 + 2.86i)3-s − 0.546i·4-s + (0.640 + 0.265i)5-s + (−1.89 − 4.56i)6-s + (−1.64 − 1.64i)8-s + (−4.66 − 4.66i)9-s + (−1.02 + 0.423i)10-s + (−0.0234 − 0.0566i)11-s + (1.56 + 0.647i)12-s − 3.53i·13-s + (−1.52 + 1.52i)15-s + 4.79·16-s + (3.55 + 2.08i)17-s + 10.5·18-s + (1.57 − 1.57i)19-s + ⋯ |
L(s) = 1 | + (−0.797 + 0.797i)2-s + (−0.684 + 1.65i)3-s − 0.273i·4-s + (0.286 + 0.118i)5-s + (−0.772 − 1.86i)6-s + (−0.579 − 0.579i)8-s + (−1.55 − 1.55i)9-s + (−0.323 + 0.133i)10-s + (−0.00707 − 0.0170i)11-s + (0.451 + 0.187i)12-s − 0.979i·13-s + (−0.392 + 0.392i)15-s + 1.19·16-s + (0.862 + 0.505i)17-s + 2.48·18-s + (0.361 − 0.361i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.945 - 0.325i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.367837 + 0.0615052i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.367837 + 0.0615052i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 + (-3.55 - 2.08i)T \) |
good | 2 | \( 1 + (1.12 - 1.12i)T - 2iT^{2} \) |
| 3 | \( 1 + (1.18 - 2.86i)T + (-2.12 - 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.640 - 0.265i)T + (3.53 + 3.53i)T^{2} \) |
| 11 | \( 1 + (0.0234 + 0.0566i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 3.53iT - 13T^{2} \) |
| 19 | \( 1 + (-1.57 + 1.57i)T - 19iT^{2} \) |
| 23 | \( 1 + (3.23 + 7.81i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-1.33 - 0.554i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-2.40 + 5.81i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.47 - 3.56i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (8.19 - 3.39i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (7.62 + 7.62i)T + 43iT^{2} \) |
| 47 | \( 1 + 8.72iT - 47T^{2} \) |
| 53 | \( 1 + (8.97 - 8.97i)T - 53iT^{2} \) |
| 59 | \( 1 + (-2.59 - 2.59i)T + 59iT^{2} \) |
| 61 | \( 1 + (-7.28 + 3.01i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 8.23T + 67T^{2} \) |
| 71 | \( 1 + (-3.63 + 8.77i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (5.49 + 2.27i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (1.48 + 3.59i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (2.26 - 2.26i)T - 83iT^{2} \) |
| 89 | \( 1 - 17.0iT - 89T^{2} \) |
| 97 | \( 1 + (2.07 + 0.860i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19413074922498084228900829326, −9.577220505885670107011887943399, −8.547821212151183047823548832466, −8.018341340944946049329505379112, −6.61149876862561226835825850954, −5.93796039285201865711988955750, −5.10799394864723161286892523362, −3.98563780004592055555095187895, −3.03817842590646229810947895648, −0.27642379562136387563109429052,
1.34472250672949776970663084842, 1.81197847720354704257861157535, 3.18444116537690459115643480940, 5.22089973824500316061665974165, 5.86341416710841220338213824382, 6.82328070059228956140719316612, 7.67461281672450032909591585882, 8.428254232957498293736529781452, 9.505527523177394966083716436197, 10.10987017123283714134195518990