L(s) = 1 | + (−1.65 − 1.65i)2-s + (−0.945 − 2.28i)3-s + 3.50i·4-s + (0.904 − 0.374i)5-s + (−2.21 + 5.35i)6-s + (2.50 − 2.50i)8-s + (−2.19 + 2.19i)9-s + (−2.12 − 0.878i)10-s + (1.35 − 3.26i)11-s + (8.00 − 3.31i)12-s − 6.30i·13-s + (−1.70 − 1.70i)15-s − 1.29·16-s + (−3.10 − 2.71i)17-s + 7.27·18-s + (1.07 + 1.07i)19-s + ⋯ |
L(s) = 1 | + (−1.17 − 1.17i)2-s + (−0.545 − 1.31i)3-s + 1.75i·4-s + (0.404 − 0.167i)5-s + (−0.905 + 2.18i)6-s + (0.885 − 0.885i)8-s + (−0.730 + 0.730i)9-s + (−0.670 − 0.277i)10-s + (0.407 − 0.984i)11-s + (2.31 − 0.957i)12-s − 1.74i·13-s + (−0.441 − 0.441i)15-s − 0.323·16-s + (−0.752 − 0.658i)17-s + 1.71·18-s + (0.247 + 0.247i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00949 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 833 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00949 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.344749 + 0.341489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.344749 + 0.341489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 17 | \( 1 + (3.10 + 2.71i)T \) |
good | 2 | \( 1 + (1.65 + 1.65i)T + 2iT^{2} \) |
| 3 | \( 1 + (0.945 + 2.28i)T + (-2.12 + 2.12i)T^{2} \) |
| 5 | \( 1 + (-0.904 + 0.374i)T + (3.53 - 3.53i)T^{2} \) |
| 11 | \( 1 + (-1.35 + 3.26i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 6.30iT - 13T^{2} \) |
| 19 | \( 1 + (-1.07 - 1.07i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.124 + 0.301i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-1.28 + 0.533i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-0.387 - 0.935i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (1.48 + 3.57i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-4.84 - 2.00i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (8.26 - 8.26i)T - 43iT^{2} \) |
| 47 | \( 1 + 9.59iT - 47T^{2} \) |
| 53 | \( 1 + (-5.67 - 5.67i)T + 53iT^{2} \) |
| 59 | \( 1 + (-6.52 + 6.52i)T - 59iT^{2} \) |
| 61 | \( 1 + (-3.21 - 1.33i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 7.83T + 67T^{2} \) |
| 71 | \( 1 + (4.23 + 10.2i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (0.798 - 0.330i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (4.15 - 10.0i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-5.01 - 5.01i)T + 83iT^{2} \) |
| 89 | \( 1 - 0.265iT - 89T^{2} \) |
| 97 | \( 1 + (-6.43 + 2.66i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.690108477300040861842725635388, −8.743830686459834636151586455511, −8.050553959550162649754366380150, −7.30137655120071845666374096909, −6.17192149362104568508664318145, −5.38479200859225152897504823357, −3.45014158770572782733786583967, −2.43906559993184842568978251151, −1.27446917641027458756958243693, −0.41329991996831908489314064626,
1.86542325691163069335558599421, 4.02951607016726562187954400013, 4.75496755973058204752858391333, 5.86026102248320997759735274264, 6.61711496289973629247689422162, 7.28051476361798887240131410324, 8.634930609806901189632876987291, 9.170999098514432812045663103210, 9.893876692919794115279979303987, 10.29560422770341022599486480678